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Visual Salience of Algebraic Transformations

Abstract

Information processing researchers have assumed that algebra symbol skills depend on mastery of

the abstract rules presented in the curriculum (Matz, 1980; Sleeman, 1986). Thus, students’

ubiquitous algebra errors have been taken as indicating the need to embed algebra in rich contextual

settings (Kaput, 1995; National Council of Teachers of Mathematics [NCTM], Algebra Working

Group, 1998). This study explored a non-representational account of symbolic algebra skills as

feature correlation within the visual field. We present evidence that algebra students respond

spontaneously to the visual patterns of the notational display apart from engagement with the

declarative content of the rules. Thus, persistent algebra errors may reflect disengagement from

declarative content rather than inability to deal with it. We sketch a Lexical Support System designed

to sustain students’ engagement with the declarative content of algebraic rules and processes, thus

complementing the exciting curricular possibilities being developed for referentially rich algebra.
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2We are grateful to Roberta Mura for bringing this quotation to the attention of the first author.

The Study of Algebra may be pursued in three very different schools, the Practical, the

Philological, or the Theoretical, according as Algebra itself is accounted an Instrument, or

a Language, or a Contemplation; according as ease of operation, or symmetry of expression,

or clearness of thought, (the agere, the fari or the sapere,) is eminently prized and sought for.

...The felt imperfections of Algebra are of three answering kinds. ...The Philological

Algebraist complains of imperfection, when his Language presents him with an Anomaly;

when he finds an Exception disturb the simplicity of his Notation, or the symmetrical

structure of his Syntax; when a Formula must be written with precaution, and a Symbolism

is not universal.2

(Sir William Rowan Hamilton, 1837, p. 293)

That application and theory each has motivated mathematical engagement is a commonplace

observation. However, the philological impulse Hamilton (1837) attributed to the pursuit of algebra

is less familiar. Typically we regard the notations and symbols of mathematics as conferring “a

power to name and rename, to transform names, to use names and descriptions to conjure,

communicate and control our images, our mental worlds” (Pimm, 1995, p. 1). In other words, it is

the images that populate our mental worlds that are the focus of mathematical inquiry; notations and

symbol systems are a gateway to these images, not a motivational focus in their own right. What

impulse to algebra might Hamilton have been alluding to with such phrases as “symmetrical

structure of his Syntax?”
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The historical context may provide some clues. In Hamilton’s time, the use of variable

symbols was propelling algebra well beyond any theoretical grounding then available. As Kline

(1980) observed,

In the first half of the 19th century, the logical foundation of algebra was also

noticeable by its absence. The problem in this area was that letters were used to

represent all types of numbers and were manipulated as though they possessed all the

familiar and intuitively acceptable properties of the positive integers. ... It seemed as

though the algebra of literal expressions contained a logic of its own (p. 158).

Hamilton’s contemporary, George Peacock (1833), attempted to deal with this problem by fiat. In

his Principle of the Permanence of Equivalent Forms, he “dogmatically affirmed” (Kline, 1980,

p. 159) the universality of properties established for whole numbers: “Whatever algebraical forms

are equivalent when the symbols are general in form but specific in value [positive integers], will

be equivalent likewise when the symbols are general in value as well as in form” (Peacock, 1833,

quoted in Kline, 1980, p. 159). 

While some contemporary mathematicians like Gregory, De Morgan, and Hankel adopted

Peacock’s strategy (Kline, 1980), Hamilton was highly agitated by the absence of theoretical

foundations. In fact he found mathematics to be so “unsatisfactory as an exercise of the mind”

(Cajori, 1924, p. 304) that he railed famously against its incorporation into general education: “If we

consult reason, experience and the common testimony of ancient and modern times, none of our

intellectual studies tend to cultivate a smaller number of the faculties, in a more partial manner, than

mathematics” (Hamilton, 1836, quoted in Cajori,1924, p. 304). Perhaps, then, it was a keen

awareness of the limitations of algebra as a theoretical pursuit that led Hamilton to appreciate an

aesthetics of form as intrinsic to algebra’s fascinations.

Rather than pursue such historical speculations, we set out, here, to examine an aesthetics

of algebraic form psychologically. In particular, we explore students’ initial response to algebra



Visual Salience of Algebra 4

rules, and present evidence that from the very start they are receptive to the visual structure of such

rules separate and apart from intellectual engagement with the declarative content. These results are

at odds with the usual cognitivist assumption that human intellectual skills rest on acquiring or

developing well structured algorithms or rules—a matter we take up in the Theoretical Frameworks

section of this article. This leads us to a critique of the current algebra reform movement with its

insistence that rich contextual settings for algebra are necessary to “provide the substance from

which and about which to reason” (NCTM Algebra Working Group, 1998, p. 164). We take a

different lesson from the failures of the traditional algebra curriculum. Rather than conclude that

students’ ubiquitous symbol manipulation errors reflect failure in dealing with algebra as abstract,

decontextualized rules, we see an intrinsic aesthetics of visual form as systematically drawing

students away from intellectual engagement. As a new curricular innovation, we outline a Lexical

Support System designed to sustain students’ engagement with the declarative content of algebraic

rules and processes, an agenda we see as complementary to the burgeoning and exciting curricular

possibilities being developed for referentially rich algebra. In the final section, we return to the

ontological status of elementary algebra as we distinguish our interests in algebra as mathematical

method from the New Math era of the 1960s in which abstract algebra content was incorporated into

the school curriculum (e.g., Haag, 1961).

THEORETICAL FRAMEWORKS

The traditional school algebra experience produces a strong tendency for students to generate

patterns of incorrect expression transformation consistent with applying “mal-rules” (Sleeman, 1986)

like those indicated in the left column of Table 1. Such response patterns have been widely observed,

documented, and classified for a quarter of a century (Booth, 1984; Bundy & Welham, 1981; Carry,

Lewis, & Bernard, 1980; Davis, 1979; Greeno, 1982; Matz, 1980; Payne & Squibb, 1990; Radatz,

1979; Sleeman, 1982, 1984, 1986; Wagner, Rachlin, & Jensen, 1984). 
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Table I

Mal-rules and Correct Rules

                                                                                                            

Mal-rules  Correct Rules

  

                                                                                                            

What is so confounding about these errors is their superficial character. Rather than reflecting

misunderstanding of the meaning of correct algebra rules, they seem to indicate nothing more

substantial than misperception of the forms of the correct rules given in the right column of Table 1.

For instance, Thompson (1989) spoke of algebra students as “prone to pushing symbols without

engaging their brains” (p. 138). Similarly, in his landmark study Erlwanger (1973) observed: 

One may be tempted to treat this kind of talk as evidence of an algebraic concept of

commutativity. But, in view of the whole picture of Benny’s concept of rules, it

appears more likely that it involves less awareness of algebraic operations than it

does awareness of patterns on the printed page. (Note to p. 19)
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Classical Artificial Intelligence Models

Ignoring this intuition that percept, rather than concept, often governs students’ algebraic

symbol manipulation, virtually all previous theorizations of algebraic skill development have

regarded conscious, declarative knowledge as foundational. This is because the classical artificial

intelligence (AI) paradigm within which such skills have been studied is inherently representational

(Brooks, 1991; Clancey, 1999; Dupuy, 2000). Classical AI represents cognition as a serial process

in which tokens, or instances of symbols, are manipulated according to fixed rules (Newell & Simon,

1985). The mode of representation is direct. When a model is interpreted, rules incorporated into the

model reflect critical relationships among the elements (Haugland, 1985). 

Within that tradition, theorists have solved the problem of accounting for students’

acquisition of algebraic rules in the obvious way: as issuing from the explicit declarative content of

the algebra curriculum. Thus Carry, Lewis, and Bernard (1980) speak of students coming to know

“the legal moves of the algebra game” (p. 2). More explicitly, Matz’s (1980) proposal

idealizes an individual’s problem-solving behavior as a process employing two

components. The first component, the knowledge presumed to precede a new

problem, usually takes the form of a rule a student has extracted from a prototype or

gotten directly from a textbook. For the most part these are basic rules (such as the

distributive law, the cancellation rule, the procedure for solving factorable

polynomials using the zero product principle) that form the core of the conventional

textbook content of algebra. (p. 95)

Matz (1980) explored how error patterns arise through the (mis)application of “extrapolation

techniques that specify ways to bridge the gap between known rules and unfamiliar problems” (p.

95). In other words, mal-rules (such as those given in the leftmost column in Table 1) are

overgeneralizations of the correct rules gained as explicit, declarative knowledge from the

curriculum.
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Such models do not negate the possibility that visual patterning may eventually come to

dominate the cognitive processes associated with performance of algebra tasks. For instance, Davis

(1984) spoke of what he called VMS sequences (visually moderated sequences) which “can be

thought of as a visual cue V1 which elicits a procedure P1 whose execution produces a new visual

cue V2, which elicits a procedure P2,... and so on” (p. 35) until the problem is completed.  Indeed,

concepts and percepts must be conceived not as fully independent of one another, but as supporting

and reinforcing one another in an iterative process (Rittle-Johnson, Siegler, & Alibali, 2001). But

such classical AI theories of skill development invariably posit the precedence, and hence the

primacy, of declarative knowledge over visual patterning.

Perhaps the best known and most detailed theory of skill acquisition is the ACT theory of

John Anderson and his colleagues.  Through its many iterations (ACTE, ACT*, and ACT-R), ACT

has maintained a fundamental distinction between “declarative knowledge [that] corresponds to

things we are aware we know and can usually describe to others ... [and] procedural knowledge ...

that we display in our behavior but that we are not conscious of” (Anderson & Lebiere, 1998a, p. 5).

In these theories, the former always produces the latter: “Both in ACT* and ACT-R, new production

rules ultimately derive from declarative knowledge” (Anderson & Lebiere, 1998b, p. 109). Thus the

extant theories of algebra symbol manipulation, conceived within the classical AI tradition, take

students’ explicit, declarative knowledge as the starting point of learning. It is this assumption that

justifies the interpretation of persistent and widespread errors of symbol manipulation as evidence

of students’ difficulties in apprehending algebra as an abstract domain of explicit rules.

Non-representational Models

In presenting evidence that students are immediately responsive to the visual structure of

algebra rules, we contribute to a growing chorus of critique of the mentalist assumptions of classical

AI. The persistent theme of this critique is that classical AI mistakes products of
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cognition—regularized, rule-like performance—for processes of cognition—rules in the head

(Brooks, 1991; Clancey, 1999; Dupuy, 2000; Estep, 2003). As Clancey, 1999, expressed it,

Traditional [AI] models serve [only] as a kind of specification for producing a

scientific explanation of how the brain physically works. In short, the map is not the

territory–pattern descriptions are not literally stored in the brain like recipes and

conventional computer programs. Taxonomic models of knowledge roughly

characterize what people know, but inadequately represent how categories form and

how they relate structurally and temporally to constitute a conceptual system. (p. xiv)

The philosophical concern underlying these criticisms is that AI’s assumption of explicit

representations stored in the brain downplays the richness and immediacy of the cognitive

connection to the world:

According to Merleau-Ponty, in absorbed, skillful coping, I don’t need a mental

representation of my goal. Rather, acting is experienced as a steady flow of skillful

activity in response to one’s sense of the situation. Part of that experience is a sense

that when one’s situation deviates from some optimal body-environment relationship,

one’s activity takes one closer to that optimum and thereby relieves the “tension” of

the deviation. ... As Merleau-Ponty [1962, p. 153] puts it: “Whether a system of

motor or perceptual powers, our body is not an object for an ‘I think’, it is a grouping

of lived-through meanings which moves towards it equilibrium” (Dreyfus, 2002, p.

378)

Within cognitive science connectionist modeling often is regarded as providing a non-

representational alternative to the serial processing of traditional AI. Parallel distributed

connectionist models provide a more neurologically plausible implementation of cognition

(Freeman, 1991; Hobson, 1988), one that more easily and flexibly models basic cognitive functions

like pattern recognition and associative memory retrieval which are not inherently well structured
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3Connectionist architectures are non-representational in the sense that they dispense with structured
representations of AI that combine with one another according to syntactic rules. However, they are
often referred to as representational in the looser sense that “they model the mental states that refer
to and make sense of the world” (Bechtel & Abrahamsen, 2002, p. 156). Advocates of traditional
AI have argued that connectionism must fail as a cognitive modeling architecture precisely because
it lacks syntactically structured representations (see Bechtel & Abrahamsen, 2002, pp. 156-199, for
a review of these criticisms and the counterarguments of connectionist theorists).

(Bereiter, 1991; Lloyd, 1989; Rumelhart, Hinton, & Williams, 1986; St. Julien, 1994). For, whereas,

“symbolic-processing models have had some success modeling performance under multiple

constraints ... these models are cumbersome and brittle; they tend to break down when the stimulus

conditions are poorly specified. Connectionist models are well suited for just such situations”

(Haberlandt, 1997, p. 159).3  Thus there is a credible body of empirical and theoretical work to

support a departure from usual mentalist assumptions about algebra learning in order to explore the

heretical notion that algebraic skills take root, not just from the declarative content of rules presented

explicitly in the curriculum, but also from their visual patterns on the printed page. 

However, we should caution that shifting from a representational to a non-representational

view of knowledge entails a revision of what counts as a psychological theory of learning and

performance. Our purpose in this study is not to operationalize a connectionist implementation of

visual salience—merely to document the effects of visual salience on learning. In this endeavor, we

characterize visual salience as an aesthetic sense of form of the sort Hamilton (1837) might have

intended as part of the philological motivation for the pursuit of algebra. Such a notion of visual

aesthetic is necessarily vague and indefinite in comparison with the hard edged and definitive models

offered in the classical AI tradition that presumes knowledge is expressible as explicit rules.

Visual Salience in Algebra

Tables 2 and 3 present rules with greater and lesser visual salience, respectively.  Run

your eye from left to right across the rules presented in Table 2, and again for those in Table 3.
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Table 2

Visually-salient Rules 
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Table 3

Non Visually-salient Rules 

                                                                                                            

 

                                                                                                            

The quality of visual salience is easy to recognize but difficult to define. Visually salient rules have

a visual coherence that makes the left- and right-hand sides of the equations appear naturally related

to one another. Elsewhere, we proposed two characteristics contributing to this visual coherence:

repetition of elements across the equal sign; and a visual reparsing of elements across the equal sign

(Awtry & Kirshner, 1994). Visual reparsing manifests itself as a dynamic visual displacement of

elements. For example, boundary tensions created by the parse on the left-hand side of the equation

may be resolved on the right-hand side. We compare this effect to an animation sequence in which

distinct visual frames are perceived as ongoing instances of a single scene. Hence, we see the

immediate connection between right- and left-hand sides as stemming from a sense that a single
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entity is being perceived as transformed over time. This relieves the observer of any obligation they

might otherwise feel to articulate conscious connections between two separate entities. 

Consider, for example, these two rules, both used in this study:

     A)     ,   and

B)     (x – y) + (w – z) = (x + w) – (y + z)

In Rule A, one easily perceives the right hand expression as resulting from physically adjoining

adjacent elements of the left hand expression. In Rule B, one, likewise, could perceive the

transformations in purely visual/spatial terms: the middle terms exchange location, as the middle

sign exchanges with the extreme signs. But in this case, the complexity of the spatial operations

creates a greater likelihood students would represent the two sides of the equation independently of

one another as static entities, attending to the structure and composition of each. Thus we classify

Rule A as having greater visual salience than Rule B, but recognize that visual salience/non visual-

salience occurs on a continuum rather than as a dichotomy (see also Awtry, 1993, which reports on

a pilot version of the current study). Note, also, that the perceived simplicity of Rule A relative to

Rule B is not a reflection of the greater complexity of Rule B in a declarative sense. These two

equations are structurally identical, with multiplication and division operations in Rule A

systematically replaced with addition and subtraction operations in Rule B.  

This analysis points toward a new explanation of students’ persistent errors in algebra symbol

manipulation. Take a close look at Table 1. Note that virtually all of the patterns of error are spawned

from correct rules that are visually salient. For example, whereas students regularly overgeneralize

the visually-salient rule (xy)2 = x2y2 as (x + y)2 = x2 + y2, they virtually never overgeneralize a non-

visually-salient rule like x2 – y2 = (x – y)(x + y) as, say, x2 + y2 = (x + y)(x – y).  This raises the

possibility that such errors may stem, in part, from the visual salience of a rule, rather than just from
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it’s declarative complexity–a matter we consider more fully in the Discussion section.  In this

respect, persistent errors may reflect lack of attention to the declarative content of algebra rules,

rather than difficulty in processing such content.

The methodological point is worth stressing here. When pointed out, visual salience may

seem an obvious phenomenon, in keeping with our intuitions about algebraic skill development

(Erlwanger, 1973; Thompson, 1989). But by the usual standards of classical AI, our characterization

of visual salience is unacceptably vague: It is not, and cannot be, captured in well-defined and

definitive algorithms. However, adopting a non-representational view of cognition gives us an entree

to explore such a vague construct as visual salience, and to pursue its implications for curriculum

and instruction.

METHOD

This study used a two treatment experimental design to assess the cognitive basis of algebraic

symbol manipulation skill. To guard against the reasonable assumption that skill development might

progress from declarative origins to non-conscious proceduralization (Anderson & Lebiere, 1998b),

subjects for the study were novices who had not yet been introduced to the alphanumeric symbol

system of algebra. This study examined the character of their algebraic competence immediately

following an initial exposure to algebra rules.

We should point out that this use of experimental methods for evaluation of theoretical

hypotheses is remote from so-called horse-race research in which the relative efficacy of one

curriculum is compared to that of another (Schoenfeld, 1987). The instructional methods and

materials used in this study are not “curricula” in the educational sense. They are experimental

treatments devised to isolate variables of interest while controlling for extraneous variables. We were

not concerned with replicating normal or realistic instructional practices, nor are we putting forth

these instructional methods or materials as educationally useful or interesting. Rather, we are making

more basic claims about the nature of students’ cognitive engagement with the alphanumeric symbol
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system of algebra. It is from these claims that we derive interpretations and proposals for algebra

curriculum.

Subjects

One hundred fourteen Grade 7 students (generally about 12 years old) in four intact classes

participated in the study. Two classes each were drawn from a predominantly middle class middle

school (School 1) and a university laboratory school (School 2) in Baton Rouge, Louisiana. This

grade level was chosen because algebra had not yet been introduced. Specifically, rules for

transforming algebraic expressions had not previously been studied.  Students whose last six week

mathematics grade was A, B, or C were categorized as high achievers. Students receiving a grade

of D or F were classified as low achievers.

Treatments

This study involved a two-treatment teaching experiment.  Students in their intact classes

were presented with 50 minute lessons for two consecutive days during their usual mathematics class

period. A third classroom period included a 30 minute review lesson followed by a posttest, with an

unannounced retention test following one week later. The lessons focused on eight rules for

transforming algebraic expressions such as the difference of squares rule and the distributive rule.

In one class at each school the notation used to represent expressions and rules was the standard

(ordinary) alphanumeric notation of symbolic elementary algebra. For the other class a tree notation

adapted from linguistic theory and artificial intelligence (Bundy & Welham, 1981; Kirshner, 1987;

Thompson & Thompson, 1987) was used for all instruction, discussion, and testing.  The distribution

of students in the sample arranged by school, gender, mathematics achievement level, and the two

treatments is displayed in Table 4.
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Table 4

Distribution of Students in Sample by School, Gender, Mathematics Achievement, and Treatment

                                                                                                                                                    

School 1 School 2

Males Females Males Females

High Low High Low High Low High Low

Ordinary notation 13 5 7 3 10 8 7 3

Tree notation 7 7 8 8 7 7 11 3

                                                                                                                                                    

Tree notation expresses the hierarchy of operations in an expression through the vertical

arrangement of nodes. As well, in tree notation letters are used to represent operations that may be

indicated only tacitly by positioning of symbols in ordinary notation. For instance, as shown in

Figure 1 the expression 2x + 3 would be represented as a syntactic tree structure in which addition

(A), the least precedent operation, is at the top, with multiplication (M), below it.  Tree notation was

intended to provide a neutral medium to introduce algebraic symbol skills. Because visual salience

is an artifact of the positioning and spacing of symbols in standard notation, we sought to use tree

notation to view students’ performance in learning algebra rules absent that factor. 
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   A

   M

2     x 3

Figure 1.  Syntactic tree for 2x + 3

                                                                                                     

Rules

Eight rules, which appear in Table 5, were used in the study.  The four rules shown in the left

column were selected because of their greater visual salience; the other four rules in the right column

were selected because of their lesser visual salience.  In order to help ensure the two rule sets did not

vary in other respects, care was taken to balance a number of extraneous characteristics including

number of constant terms, number of parentheses, and number of operations. To achieve this

balance, specialized versions of ordinary algebra rules were used in some instances. For example,

2(x – y) = 2x – 2y was used in place of the more general w(x – y) = wx – wy to equalize the number

of numeric versus alphabetic characters across rule type. The rule sets were constructed such that

both groups contained a total of eight constants. The total number of operations was nearly balanced:

20 for the visual rules; 21 for the non-visually-salient rules. The visual rules incorporated a total of

five sets of parentheses on the left-hand sides of equations, whereas the non-visually-salient rules

contained four sets of parentheses on the left-hand sides. An arbitrary order of presentation of the

eight rules was used consistently across the two treatment groups.
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Table 5

Rules Used in the Study 

                                                                                                                                 

Visually salient Rules Non-visually-salient rules

2(x – y) = 2x – 2y

(xy)2 = x2y2

x2 – y2 = (x – y)(x + y)

(x – y) + (w – z) = (x + w) – (y + z)

(x – 1)2 = (x2 – 2x) + 1

                                                                                                                                 

Instruments

The posttest consisted of 24 multiple-choice items. Each test item presented students with

an algebraic expression. The task was to select from among six choices (including “none of these”)

the expression that would result from application of one of the rules to the given expression. The

available choices included expressions similar to the correct answer.  For example, in ordinary

notation, the expression (7x)2 had response choices (7x)2, 7x2, 72x2, 7x2, 72x, and “none of these”.  

Figure 2 presents the same item in syntactic tree notation.



Visual Salience of Algebra 18

                                                                                                                                                   

P

    M                   =        ?

  7   x           2

   1  2    3  4  5 6

  P M   M P M    none

  P    P    P    P   M    P of

7 x 2 7 x 2 7 2  x  2 7 x 2 7 2 x   these

Figure 2.  A test item and answer options in syntactic tree notation.

Note.  M represents multiplication; P represents exponentiation or “power”.

                                                                                                                                                  

Three items were presented for each rule.  Two of the three items were recognition tasks and

the other item was a rejection task.  In recognition tasks, like that shown in Figure 2, a correct

answer could be found among the five multiple choice options.  In rejection tasks no rule applied to

the given expression, and the correct answer was “none of these.”   Among the other choices for

rejection tasks was one in which a rule nearly applied.  For example, in a rejection item (not shown)

that used the expression x2 + y2, none of the rules students learned could be applied, although the

choice (x – y)(x + y) might be selected as an answer if the difference of squares rule were

overgeneralized to a difference-or-sum of squares rule. Thus, recognition tasks assessed a student’s

ability to identify routine applications of the rules; rejection tasks evaluated a student’s ability to

constrain overgeneralizing the context of application of the algebra rule. The 24 test items were

presented in random order.
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A retention test given one week later was identical in structure to the posttest, except that

variables and noncritical constants were changed (e.g., (5w)2 = ? replaced the posttest question

(7x)2 = ?).  The two treatment groups received identical tests, except for the notational form in which

items were presented. Both posttest and retention test results were computed as the percentage

correct. Only students who participated in the two instructional sessions were allowed to take the

tests. Nine students present for the posttest were absent for the retention test.  

Procedures

Great care was taken in the instructional process to minimize extraneous differences in the

two treatments. Particularly for ordinary notation in which many of the operations are represented

by the positioning of symbols (e.g., juxtaposition for multiplication, diagonal placement for

exponentiation) rather than by an explicit symbol (e.g., M for multiplication, P for exponentiation,

or power) it would be easy to slip into a more informal mode of exposition. For example, “3x” might

be read as “three ex,” or “x3” as “ex cubed.”  To counteract this tendency, a specified lexicon was

used for all instructional references to the operations. For instance, multiplying a by b always was

stated as “a multiply b” or as the “multiplication of b by a” regardless of whether the notation used

was tree notation or the standard alphanumeric system.

Parsing is another aspect of instruction that required careful consideration. In tree notation,

the parse of the expression is built into the structure of the branching configuration. Thus in Figure 1

the precedence of multiplication over addition is indicated by the fact that only the M actually

connects literals (2 and x) through its branches. There is no such forced interpretation in ordinary

notation, so the equivalent expression 2x + 3 could, in principle, be interpreted as (2x) + 3 or as

2(x + 3). It is merely notational convention that holds multiplication as more precedent than addition

when parentheses are missing. This could have introduced the need for substantially different

instructional treatments for the two groups, except that Kirshner (1989) noticed that students initially

learn to parse algebraic expressions by “reading” the spacing and positioning cues as syntactic
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markers. Thus students learn to make the appropriate interpretation of 2x + 3 not because of explicit

instruction about operation levels, but because close spacing comes to signify greater precedence

than wide spacing. We capitalized on this learning tendency by saying very little about parsing

structure in either instructional treatment. In both cases, we just let the symbol system “speak for

itself.”  We supplemented this strategy by a somewhat more liberal usage of parentheses in ordinary

notation than is strictly necessary. For example, the rule (x – 1)2 = (x2 – 2x) + 1 used an extra set of

parentheses on the right-hand side of the equation so that students would not have to master the left-

to-right parsing convention for cases where operations are of the same level, as for example with

addition and subtraction. As well, we minimized the syntactic complexity of all examples used in

instruction and testing. For instance, the difference of squares rule was illustrated and tested through

examples like 62 – w2 = (6 – w)(6 + w) rather than through syntactically more complex examples like

(6v)2 – w2 = (6v – w)(6v + w).

All classes were taught by the second author. On the first day of instruction several

expressions were presented to each class to introduce students to the notation with which they would

be working. Then, each of the eight rules was taught individually using four examples, as follows.

First, the rule was displayed on an overhead projector, and the teacher gave a declarative explanation

of the rule. For instance the rule x2 – y2 = (x – y)(x + y) was explained as “when the left hand side

consists of a number, power 2, subtract another number, power 2, the right hand side will be the first

number subtract the second number multiply the first number add the second number.” Traditional

names for rules (e.g., difference of squares) were not used. Next, an example involving other literals

was used to illustrate the rule. With the rule and first example still visible, the left-hand side of a

second example was shown and a student was arbitrarily chosen to predict the result. Other students

were called upon to support or challenge the answer given. For the final two examples, the rule and

the previous examples were removed from the overhead. The instructional procedure was the same

as for the second example, except students no longer had the benefit of being able to see the rule.
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Instruction was entirely procedural in that the technical process of rule application was stressed

without mention of the numerical or referential meaning of the rules.

During the second day of instruction all eight rules were shown together, after which the rules

were reviewed individually using the same format as on the previous day. Then, a 17 item multiple

choice practice quiz was given featuring the sorts of items to be used in the tests. After completing

the practice quiz, the class as a whole reviewed the items one-by-one, with discussion. The third day

was identical to the second day, except the practice quiz was replaced with a 24 item posttest of

similar form. The posttest was not reviewed in class. One week later, the students were given a

retention test of the same form as the posttest. They had not been told to expect this test.

A nonparticipant observer was present for the three teaching days to verify that teaching

protocols were adhered to and that preferential treatment was not given to either group or to either

rule type, and to check for any differences in the dynamics and organization of the classes that might

discriminate outcomes. The observer reported no such biases. 

Analysis

The purpose of the study was to investigate the role of visual salience in the initial learning

of algebra. If the initial learning of rules in algebra is acquisition of declarative information (as

postulated in traditional information processing theories), then the results for visually salient rules

should match those for non-visually-salient rules. For instance, students might learn the rule 2(x –

y) = 2x – 2y as indicating that when a difference of two values is doubled the result is the same as

when the individual terms are doubled and then the difference between them is found. For this kind

of declarative representation the visual presentation of the rule should not be of consequence. This

is because compilation of declarative knowledge into procedural knowledge generally is understood

to occur over long periods of engagement within a domain, not in initial engagements such as

occurred in this study. (For example, Anderson, 1983, studied compilation of geometry knowledge

through thirty 45-minute lessons.) However, if algebra learning does not always begin with
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declarative knowledge, then visual salience may immediately begin to influence the character of

students’ performance.

Performance on recognition and rejection tasks explored this question in complementary

ways. Recognition tasks test the superficial pattern recognition that might be expected to occur if the

learner is attending to visual form rather than structural meaning. In this case, students should

demonstrate more successful learning of visually salient rules than of non-visually-salient ones.

Rejection tasks require the learner to resist overgeneralizing the domain of application of rules to

apparently similar situations. In this case attending to form rather than to meaning would hurt

performance. On the other side of the coin, if learning really begins with declarative understanding

there should be no systematic differences between visually-salient rules and non-visually-salient

rules on either type of task. Tree notation provides a kind of base line. In this notation, visual

salience (which is an artifact of the positioning of symbols in standard notation) is eliminated. Thus,

the tree diagram notation was intended as a means to compare the learning of the two sets of rules

without the possible influence of visual salience.

Recognition and rejection tasks were analyzed separately by using analysis of variance for

repeated measures. The analysis employed a 2 × 2 × 2 × 2 × 2 factorial design including four

between factors: school, gender, mathematics achievement, and notation (treatment); and one

repeated within factor: rule type. A supplementary analysis of item responses was performed in

addition to the subjects analysis to see if the results were general across the rules used in the study.

This analysis used a similar factorial design, but included rule type as a between factor repeated over

the within factors of school, gender, mathematics achievement, and notation treatment.
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RESULTS

Recognition Tasks

The posttest analysis for within subjects effects indicated a significant rule type effect,

F(1, 97) = 17.07, p < .0001, and a significant interaction between rule type and treatment,

F(1, 97) = 36.82, p < .0001. The rule type by treatment interaction was also found to be significant

in the items analysis, F(1, 6) = 25.47, p < .005. A table of mean percentages on the posttest and

retention test for the rule type by treatment interaction is provided in Table 6.  

                                                                                                                                                      

Table 6

Recognition Task Posttest and Retention Test Percentages by Rule Types and Treatments

                                                                                                                                                      

Posttest Retention test

Visually

salient

Non-visually-

salient

Visually

salient

Non-visually-

salient

Ordinary notation 73.0

(56)

40.4

(56)

68.5

(52)

35.4

(52)

Tree notation 48.9

(58)

55.8

(58)

47.4

(53)

53.1

(53)

Note.  Values in the parentheses represent the number of subjects within the cell.

                                                                                                                                                      

A test of simple effects indicated the treatment group using ordinary notation performed

significantly better, F(1, 111) = 28.53, p < .0001, on the visually salient rules, but significantly

worse, F(1, 111) = 7.72, p < .01, on the non-visually-salient rules than the tree notation treatment

group. In accordance with our hypothesis, recognizing visually salient rules was significantly easier

(73.0% correct) than recognizing non-visually-salient rules (40.4% correct) for students taught and
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tested in ordinary notation, F(1, 56) = 4.14, p < .05. For students using tree notation, scores on

visually salient and non-visually-salient rules seem about equal (48.9% and 55.8%, respectively).

Interestingly, however, the slight reverse tendency for visually salient rules to be harder (48.9%

correct) than non-visually-salient rules (55.8% correct) also was significant, F(1, 55) = 77.72,

p < .0001. As we had balanced the two rule sets as nearly as possible on characteristics other than

visual salience, we can offer no explanation for the differences in difficulty discovered for tree

notation. However, if anything, these differences highlight the greater base line difficulty of the

visually salient rule set, making the converse findings in ordinary notation more pronounced.

The results of the subjects analysis on the retention test were similar. The within subject

effects indicated a rule type effect, F(1, 89) = 21.12, p < .0001,  and a rule type by treatment

interaction, F(1, 89) = 44.97, p < .0001. The interaction was also found in the items analysis,

F(1, 6) = 36.43, p < .001. 

A test of simple effects for the retention test indicated students using ordinary notation

performed significantly better, F(1, 103) = 17.80, p < .0001, on the visually salient rules, but

significantly worse, F(1, 103) = 11.22, p < .0001 on the non-visually-salient rules than the students

using tree notation. In contrast to the posttest, no significant difference between the two rule types

was found for students using tree notation (47.4% and 53.1%, respectively). But for students using

ordinary notation, visually salient rules were significantly easier (68.5%) than non-visually-salient

rules (35.4%), F(1, 51) = 91.66, p < .0001.

Other significant effects were found on both tests that do not bear directly on the central

hypothesis. A school effect was found on the posttest with School 2 subjects having a higher mean

percent correct (63.6%) than School 1 subjects (45.5%) in the subjects analysis, F(1, 97) = 19.72,

p < .0001, as well as in the items analysis, F(1, 6) = 54.27, p < .001. An effect of past mathematics

achievement was also found on the posttest, F(1, 97) = 12.05, p < .001, with high achieving students
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scoring better (61.1%) than their low achievement counterparts (43.8%) in the subjects analysis, as

well as in the items analysis, F(1, 6) = 12.32, p < .05.

The retention test indicated similar trends. A school effect was found with School 2 subjects

scoring significantly better (58.8%) than School 1 subjects (43.5%) in the subjects analysis,

F(1, 89) = 13.89, p < .0005, as well as in the items analysis, F(1, 6) = 6.74, p < .05. In addition high

achievement students scored better (56.4%) than low achievement students (41.6%) in the subjects

analysis, F(1, 89) = 8.84, p < .005, as well as in the items analysis, F(1, 6) = 17.43, p < .01.

Gender effects.  The posttest analysis for within subjects effects also indicated an interaction

between rule type and gender, F(1, 97) = 4.30, p < .05.  These results are shown in Table 7.   A test

of simple effects indicated male subjects performed significantly better (55.4%) than female subjects

(42.6%) on the non-visually-salient rules, F(1, 111) = 5.18, p < .05. Whereas no significant

difference was found between rule types for male subjects, female subjects performed significantly

better on the visually salient rules (62.8%) than on the non-visually-salient rules (42.6%), F(1,

63) = 23.99, p < .0001. 

                                                                                                            

Table 7 

Posttest Recognition Task Percentages for Rule Types By Gender

Visually

Salient

Non-visually-

salient

Male 58.4

(64)

55.4

(64)

Female 62.8

(50)

42.6

(50)

Note.  Values in the parentheses represent the number of subjects within the cell.
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In an attempt to interpret these data, we examined the more specific means for male and

female students in the two treatment groups.  The results from this analysis appear in Table 8. 

                                                                                                                                                  

Table 8

Posttest Recognition Task Percentages  for Rule Types By Gender and Treatment

                                                                                                                                                  

Ordinary notation Tree notation

Visually

salient

Non-visually-

salient

Visually

salient

Non-visually-

salient

Male 70.6

(36)

48.8

(36)

50.0

(28)

59.9

(28)

Female 74.3

(20)

35.8

(20)

47.8

(30)

53.1

(20)

Note.  Values in the parentheses represent the number of subjects within the cell.

                                                                                                                                                  

Although the rule by gender by treatment interaction was not significant, F(1, 97) = 2.03, p = .16,

we can see the trends in the data that contribute to the overall significant effects when collapsed

across treatment groups. In tree notation male students tended to excel on the non-visually-salient

rules (59.9% correct), whereas in ordinary notation female students tended to lag on the non-visually-

salient rules (35.8% correct). The combination of these tendencies appears to constitute the

significant overall effect we found.  Because we designed tree notation to eliminate visual salience,

and because we designed the visually salient and non-visually-salient rule sets to be equivalent in

all other respects, we can offer no explanation of the first of these tendencies in the data. However,
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the second tendency mirrors results in a previous study where it was suggested that a field

independent cognitive style might make male students less dependent on the visual arrangement of

symbols in ordinary notation than female students (Kirshner, 1989). Because the interaction effect

was not significant, we will not pursue such speculations further in this article.

Rejection Tasks

In ordinary algebra notation the visual salience of certain rules that makes them easier to

recognize may mediate against developing declarative representations. If so, it was anticipated that

subjects would be less able to constrain overgeneralizing these rules in comparison with rules that

lack visual salience. For syntactic tree notation, since subjects must engage equally with the

declarative content for both rule types, no significant differences were expected between rule types.

A rule by treatment interaction was indicated by the within subjects effects in the subjects

analysis, F(1, 97) = 11.31, p < .005, and marginally in the items analysis, F(1, 6) = 5.12, p < .065.

Posttest and retention test mean percentages for the rule type by treatment interaction are provided

in Table 9.

A test of simple effects for the posttest indicated the ordinary notation treatment group

performed significantly better, F(1, 111) = 14.57, p < .0005 than the tree notation treatment group

on the non-visually-salient rules. In tree notation it was easier to constrain overgeneralization for

visually salient rules (15.2% correct) than for non-visually-salient rules (10.9% correct),

F(1, 56) = 5.92, p < .05, but in ordinary notation non-visually-salient rules were easier to constrain

(19.8%) than visually salient rules (13.0%), F(1,55) = 11.94, p < .005. As with the recognition tasks,

we have no explanation for the differences in difficulty of rule types given in the tree notation. But

as with recognition tasks these differences in base line difficulty contrast with, and hence emphasize,

the differences emerging in ordinary notation.
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Table 9

Rejection Task Posttest and Retention Test Percentages By Rule Types and Treatments

                                                                                                                                                  

Posttest Retention test

Visually

salient

Non-visually-

salient

Visually

salient

Non-visually-

salient

Ordinary notation 13.0

(56)

19.8

(56)

8.3

(52)

15.9

(52)

Tree notation 15.2

(58)

10.9

(58)

13.0

(53)

7.4

(53)

Note.  Values in the parentheses represent the number of subjects within the cell.

                                                                                                                                                  

As can be seen in Table 9, the pattern of results in the retention test matches that of the

posttest.  Whereas in tree notation subjects found the visually salient rules to be easier to constrain

(13.0%) than the non-visually-salient rules (7.4%),  in ordinary notation the visually salient rules

were more difficult to constrain (8.3%) than the non-visually-salient rules (15.9%). However,

basement effects may have reduced our ability to detect significant effects here. The items analysis

was not significant. The within-subjects effects did indicate a rule type by treatment interaction,

F(1, 89) = 27.49, p < .0001; however, a four-way interaction, F(1, 89) = 7.19, p < .01, involving

school, gender, treatment, and rule type render these data uninterpretable. Finally, as with the

posttest, an achievement effect was found on the retention test, F(1, 97) = 6.39, p < .05, with high

mathematics achievement students performing better (34.1%) than their low achievement

counterparts (22.1%) on the subjects analysis.
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CONCLUSIONS

In this study, Grade 7 students not previously exposed to algebraic symbol manipulation tasks

were taught to apply eight algebra rules over the course of two lessons. Half of the rules were

selected for their high visual salience–a visual coherence that seems to make the left- and right-hand

sides appear naturally related to one another (see Table 5, left column). The other four rules were

selected for their low visual salience (see Table 5, right column). We compare the effect of visual

salience to an animation sequence in which distinct visual frames are perceived as ongoing instances

of a single scene. We see this effect as relieving the observer of any obligation they might otherwise

feel to make conscious connections between two separate entities, as they might be inclined to do

for non-visually-salient rules.

Two kinds of tasks were used to assess the character of students’ initial knowledge of the

algebra rules. Recognition tasks assessed the students’ ability to identify routine applications of the

rules. Rejection tasks provided an expression that could not be manipulated by any of the rules,

thereby measuring a student’s ability to constrain overgeneralizing the context of application of the

given rules. Thus if students were engaging with rules based on the visual character of expressions

we would expect visually salient rules to be easier to recognize (recognition tasks) but harder to

constrain (rejection tasks) than non-visually-salient rules. 

The subjects and items analyses for the posttest support the hypothesis that students engage

with the visual characteristics of the symbol system in their initial learning of algebra rules.

Percentage correct scores for recognition tasks were significantly higher for visually salient rules

than for non-visually-salient rules. Such scores for rejection tasks were significantly lower for the

visually salient rules. The tendency for the results on the retention test were similar; however, with

the overall degradation of performance over time, only some of these differences retained statistical

significance.
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To the extent possible we tried to balance the two groups of rules with respect to other

variables that might account for differential results (number of constant terms, number of

parentheses, number of operations). But we went further than this. In order to obtain baseline data

on rule difficulty independent of visual salience, half of the subjects were taught using a tree notation

that displays the hierarchy of operations in an expression through the vertical arrangement of nodes.

Tree notation was used because it presents an alternative medium that does not exhibit the visual

salience present in the usual notation. For example, consider the visually salient rule

 and the non-visually-salient rule 

both used in the study. What may be masked by the visual characteristics of ordinary notation is that

the two rules are structurally identical, except for the level of the operations: Multiplications and

divisions in the first rule are systematically replaced by additions and subtractions in the second rule.

In tree notation, where visual salience does not dominate perception, the structural similarity is

plainly evident, as shown in Figure 3.

                                                                                                                                                       

        M         D         A         S

  D   D =   M   M   S   S =   A   A

x   y w   z       x   w y   z   x   y w   z   x   w y   z

 Figure 3.  Comparing tree notation for  and 

                                                                                                                                                       

Because of our efforts to balance other variables that might account for differences, we

anticipated that tree notation would demonstrate the underlying equal difficulty level of the two rule
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sets. Contrary to our expectation visually salient rules turned out to be significantly more difficult

to recognize and significantly less difficult to constrain than non-visually-salient rules when

presented using tree notation. We have not found any convincing explanation for these inversions

of results; but if anything they emphasize that the baseline difficulty of the two rule-sets mitigated

against detecting the influence of visual salience, so conspicuously present in this study.

Given Davis’ (1984) previous identification of what he called visually moderated sequences

in which a visual cue elicits a procedure which produces a new visual cue which elicits a new

procedure, and so on, the idea that processing of algebraic symbols involves visual cues cannot be

considered novel or surprising. However, the assumption of previous cognitive science research that

declarative knowledge comes first (Anderson & Lebiere, 1998b) is challenged in this study. By

selecting younger students who had not previously encountered algebra transformation rules, we

have demonstrated that visual pattern matching is immediate and spontaneous. Thus, this study

reopens questions about students’ experience in traditional algebra instruction that have long been

considered settled, and renews possibilities for a structural algebra curriculum that have largely been

abandoned by mathematics education theorists.

DISCUSSION

The directions of current reform efforts in algebra education are firmly set within the NCTM

Principles and Standards for School Mathematics (2000):

In general, if students engage extensively in symbolic manipulation before they

develop a solid conceptual foundation for their work, they will be unable to do more

than mechanical manipulation (National Research Council [NRC], 1998). The

foundation for meaningful work with symbolic notation should be laid over a long

time (p. 39).

The source of this “solid conceptual foundation” was summarized by the NCTM’s Algebra Working

Group (1998) which charted a Framework for reform:
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The “Framework” proposes a way to develop algebraic reasoning by exploring a

variety of contextual settings that are connected by organizing themes. By serving as

organizers, themes help students recognize important ideas and make connections.

Contextual settings are the ground on which these themes play out. They provide the

substance from which and about which to reason. (p. 164)

NCTM’s conclusion that work with algebraic symbols can only become productive for

students within contextually rich settings summarizes a consensus in the algebra education research

community that has been building for several decades. The foundation upon which that consensus

rests is a shared understanding of the failure of the traditional curriculum as manifest in the

seemingly mindless errors patterns of the sort listed in Table 1. For instance Booth’s (1989)

conclusion that “algebraic representation and symbol manipulation ... should proceed from an

understanding of the semantics or referential meanings that underlie it” (p. 58), followed upon her

extensive study of students errors (Booth, 1984). Similarly, Fey (1992) led development of the

contextually rich Computer-Intensive Algebra curriculum, in part, because “many students do not

become proficient in the skills of algebra ... [and] very few students acquire the understanding of

algebraic ideas and methods that is required to reason effectively with symbolic expressions” (p. 1).

And Kaput (1995) based his call for contextually rich curricula on “the current wholesale failure of

school algebra:”

acts of generalization and gradual formalization of the constructed generality must

precede work with formalisms – otherwise the formalisms have no source in student

experience. The current wholesale failure of school algebra has shown the

inadequacy of attempts to tie the formalisms to students’ experience after they have

been introduced. It seems that, “once meaningless, always meaningless.” (pp. 74-75)

The conclusion of the research community that algebraic concepts need to be explored in

contextually rich settings follows reasonably from the interpretation of persistent errors as indicating
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students’ failure to manage the declarative demands of abstract, decontextualized rules. But the data

reported here challenge this interpretation. Students appear to begin their processing of (at least)

some rules, presented in a didactic manner, at the subcognitive level (Hofstadter, 1985) of visual

pattern matching rather than just at the conscious level of declarative content. Thus students’

persistent algebra errors may stem from disengagement from declarative content rather than from

difficulties with the declarative content, per se.

The study reported here, by itself, does not provide evidence of the extent to which visual

salience may be an influence upon students’ algebra learning. However, in the remainder of this

section we integrate the results of this study with those of a previous investigation into the visual

syntax of algebraic expressions (Kirshner, 1989) to produce a more comprehensive account of

algebra skill development through traditional instruction. This account reveals the visual pattern

modality as broadly dominating algebra skill development. Thus we believe previous researchers

have been premature in concluding from the persistence of seemingly mindless procedural errors that

students cannot handle the declarative content of elementary algebra rules. Rather, we believe that

students capabilities in this regard have not been tested. In the next section we outline a curricular

approach that enhances the declarative character of algebra by attenuating the effects of visually

salient notations through introduction of a specialized lexicon. Such a curriculum has the possibility

of re-energizing the traditional mathematics education interest in introducing secondary school

mathematics students to algebra as a formal, structural endeavor, to complement the exciting

possibilities for referential algebra that currently are being developed.

Retheorizing Error Patterns in Algebra Symbol Skills

The results here extend a previous study that examined the influence of visual cues in the

syntactic parsing structure of algebraic expressions (Kirshner, 1989). That study was concerned with

the nature of students’ competence in identifying the syntactic structure of an expression like 5x2

which permits two possible parses: (5x)2 and 5(x2). The conventions for operation precedence (in the
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absence of parentheses or other signs of aggregation) can be neatly summarized in terms of operation

levels

(a) Higher level operations are precedent

(b) If adjacent operations are of equal level, the operation on the left is

precedent

where operation level is given a declarative interpretation:

Level 1 addition and subtraction

Level 2 multiplication and division

Level 3 exponentiation and radical

(Level 3 operations are said to be higher than Level 2 operations which are higher than Level 1

operations.)

Kirshner (1989) noticed that operation level also could be given a visual interpretation based

on the spacing and positioning of symbols:

Level 1 wide spacing  a ± b

Level 2 horizontal/vertical juxtaposition ab or  

Level 3 diagonal juxtaposition ab or  

In this interpretation, deciding, for example, that 5x2 groups the x with the 2 prior to the 5 is

accomplished through a visual hierarchy of diagonal juxtaposition ahead of horizontal juxtaposition

rather than through a declarative hierarchy of exponentiation before multiplication. Kirshner (1989)

demonstrated that for many students competence in parsing depends on the usual alphanumeric

display. Declarative knowledge does not become sufficiently well established to enable correct

parsing without the support of the visual relations in standard notation. Thus visual salience comes
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into play not only in the character of some transformational rules, but also in the parsing structure

of algebraic expressions.

How are these two aspects of visual salience interrelated? A declarative account of algebra

rules would depend on explicit knowledge of both the parsing structure of expressions and the

transformations accomplished by each rule. For example, an explicit understanding of the rule

(xy)2 = x2y2 requires knowing the context of application, a product is raised to a power, as well as the

action of the transformation, the power is distributed over the product. Visual salience of syntactic

parsing structure enables students to work with the form (xy)2 without engaging explicitly with its

structural elements. Visual salience of transformations enables the action to be carried out without

reflective grounding.

What is intriguing is the collusion of visual salience of transformational patterns and parsing

cues in the production of error patterns like those displayed in Table 1. The errors students tend to

make in overgeneralizing rules are related to syntactic structure: they overgeneralize the context of

application of the rule, not the nature of the transformational action. For example when students

overgeneralize (xy)2 = x2y2 as (x + y)2 = x2 + y2, they are overgeneralizing the context of application

of the rule; the transformational action is essentially correct. As Davis and McKnight (1979) noticed

in their extensive study of algebra errors: “The syntax of algebraic expressions may be a key or

milestone kind of knowledge in algebraic learning. The degree of syntactic security seems to be a

crucial element in a student’s predisposition to regression under strain” (p. 56).

However, if students’ errors are related to insecurities with the syntactic structure of

expressions, why do these errors tend only to occur with visually salient rules? Why do students fail

to overgeneralize, say, x2 – y2 = (x – y)(x + y) as x2 + y2 = (x + y)(x – y)?  In part, we suspect this may

have to do with an anomaly in the algebra lexicon: The names for non-visually-salient rules tend to

provide more support for explicitly apprehending the parsing structure of the input expression than

do names for visually salient rules. For example, x2 – y2 = (x – y)(x + y)  is called “the difference of
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4This psychological argument does not obviate the need for further historical and ontogenetic
analysis. As we reviewed in the introduction, mathematicians of Hamilton’s day were inclined to
accept Peacock’s (1833) Principle of the Permanence of Equivalent Forms in which the generality
of certain rules was accepted without argument or justification. It seems that the new notations being
incorporated into algebra had the consequent effect of transforming rules—statements of specific
relationships—into patterns that could be carried easily over to new domains. We offer, with
speculative abandon, the proposal that as algebra progressed from its rhetorical and syncopated
phases into its symbolic phase (Sfard, 1995), it became a repository in spatial form for grammatical
patterns that normally play out in the temporal space of speech and language. For instance, the
syntactic precedence of adjacent expressions over spaced expressions that resolves the ambiguity of
a + bc as  a + (bc) [rather than (a + b)c] has a counterpart in the parsing of natural language, as
revealed in the resolution of the ambiguity of the oral expression /light/ /house/ /keeping/ through
temporal juxtaposition, as either /lighthouse/ /keeping/ or /light/ /housekeeping/. Similarly, in the
transformational realm, the distributive pattern present in some algebraic contexts (e.g., c(a + b) =

ca + cb,  but not others (e.g., ), is preceded, historically and

ontogenetically, by vast experience in grammatical interpretation in natural language. For instance,
“Old men and women were released first”, is ambiguously interpretable either distributively as “Old
men and old women were released first,” or non-distributively as “Old men and [all] women were
released first.” Similarly, “I like cake and ice cream” is interpretable distributively as “I like cake and
I like ice cream,” or non-distributively as “I like cake and ice cream [together, but not separately].”

squares” rule, a title that identifies the syntactic form of the input expression, whereas (xy)2 = x2y2

is not normally called “the power of a product” rule, which would likewise identify the syntactic

form of the input expression.  (Compare also “the sum or difference of cubes” rules, and the

“binomial square” rule with unnamed visually salient rules like (xy)z = x yz and xy+z = xyxz).

But our data lead us to believe the lexical issue is only a minor factor: we achieved these

same overgeneralizations for visually salient rules while controlling for extraneous variables like

differential naming of rules. Rather, we think visual salience of transformations influences

performance by creating the illusion of an animation sequence: The perception that the left and right

hand sides of the equation are ongoing instances of a single scene obviates the need to engage

explicitly with the structural description of either expression. In contrast, the sense of dealing with

separate entities in the case of non-visually-salient rules forces students to attend more fully to the

structural descriptions. This explains why the rules that tend to become overgeneralized by students

are visually salient.4
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Thus the propensity to proliferate algebraic forms, historically and ontogenetically, may be
conditioned by a broader syntactic capacity.

Unfortunately, rather than intervening to establish a declarative focus, the traditional algebra

curriculum actively supports a reliance on visual processing. From one of our own secondary school

algebra learning experiences we recall being taught the BOMDAS rule for order of operations:

Brackets, Of, Multiplication, Division, Addition, Subtraction. This account of order of operations

mixes a marker of aggregation, brackets (there are others as well that are not mentioned–the

vinculum as used in  or , and superscription as in abc), together with a hierarchy of

operations 

that applies in the absence of aggregation markers. Moreover, the hierarchy of operations

does not mention left-to-right precedence for operations of equal level and even omits exponentiation

and radical, rendering the mnemonic unable to handle such straightforward cases as 5x2.

We believe such declaratively insufficient instruction endures in the traditional algebra

curriculum because of a persistent misinterpretation on the part of educators of students’ successful

performances. That students are able to make correct parsing decisions with algebraic expressions

like 5x2 is taken as evidence they have mastered the declarative content of the hierarchy of operation.

Similarly, a quick competence with routine applications of transformational rules is taken to indicate

a degree of declarative mastery of the rules. The visual patterning underlying these competencies is

not appreciated. Thus instruction moves on to more complex skills before the declarative

fundamentals have been established. 

This premature abandonment of fundamentals tends to create momentum for the continued

dissociation of skills from a structural understanding of algebra. Lacking the basic structural

perspectives they need to reason explicitly about new rules and procedures they are learning students

become increasingly reliant on visual pattern matching competencies. Eventually, many students do

manage to persevere to a mute competence in algebra as visual pattern matching processes become
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sufficiently refined to successfully constrain overgeneralizations. But this is a shallow victory, most

often achieved without insight or interest, without connection to the broader projects of mathematics,

and without providing a foundation for further theoretical studies or for insightful application. It is

only a small minority of students, perhaps because of a field independent cognitive style (Kirshner,

1989), that seem to orient themselves to an explicit structural interpretation of algebra. Thus Kaput’s

(1995) above quoted dictum, “‘once meaningless, always meaningless’” (p. 75) is correct. But

meaninglessness in manipulating expressions and equations in traditional algebra instruction stems

from an absence of declarative fundamentals, not from an absence of referential context.

A NEW PEDAGOGICAL DIRECTION

This analysis, we believe, points the way to a new pedagogical approach for elementary

algebra, an approach that requires syntactic and transformational processes to be articulated

declaratively, enabling more, rather than fewer, students to escape the notational seductions of

nonreflective visual pattern matching. But first, we want to clarify that the pedagogical issue we

engage within this article is not whether algebra instruction should make use of rich contextual

settings. We take it as obvious and uncontested that algebra has vitally important application to both

number and quantity, and that contextually rich settings are ideal for exploring such applications.

Indeed, the possibility of escape from mindless symbol manipulation through referential context has

been enabled by computational technologies that not only perform symbolic manipulations instantly

but also can hot link equations, graphs, and tables with real world settings to provide extraordinary

educational opportunities for students to experience algebraic relations dynamically (e.g., Romberg,

Fennema, & Carpenter, 1993). Rather, we take issue with the belief that for many students such

settings can provide the only route to algebraic meaning. Our overall curricular view is that the

referential and abstract-decontextualized facets of algebra need to grow in tandem with one another,

each approach having its own integrity and space in the curriculum, neither subsuming the other. We
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5An alternative instructional approach might be to impose a pedagogical notation like tree notation
as a substitute for ordinary notation as a way to forestall visual pattern matching. We recommend
against this practice for two reasons. First, as with ordinary notation, tree notation may provide for
it’s own sorts of salience thus far unexplored and unexamined (for instance as may be implicated in
the own inscrutable tree notation results in this study). Second, ordinary notation seems to have been
designed and/or developed to create certain visual economies of processing. We see it as more
productive to guide students carefully in the use of this powerful tool rather than to postpone its
usage and then face the added burden of translating back to ordinary notation.

introduce a specialized lexicon as a new curricular approach to algebra as a formal, structural study

to complement the current focus on referentially rich domains.

The approach we propose is to intercede discursively between the students’ spontaneous

matching of visual patterns and their performance of mathematical skills by instituting a Lexical

Support System (LSS) through which students give more precise declarative accounts of algebraic

structures and processes (Kirshner, 1998). The foundation of the strategy is rigorous structural

description of algebraic expressions. The starting point is an explicit declarative account of the

conventions for parsing algebraic expressions (order of operations), as given above. From here, the

principal operation of an expression is defined as the least precedent operation according to the

parsing rules (e.g., the principal operation of 5x2 is multiplication because exponentiation has higher

precedence than multiplication). The principal subexpressions of the expression are the parts of the

expression joined by the principal operation (e.g., 5 and x2 are the principal subexpressions of 5x2).

Recursively, each subexpression can itself be parsed yielding a complete structural description of

an expression. Lexical items like term and factor that usually are used casually in classroom

conversation can now be rigorously defined: Terms (factors) are the principal subexpressions of an

expression whose dominant operation is addition (multiplication).5

This explicit structural description of expressions is preliminary to rigorous description of

transformational rules in terms of their structural effects on expressions, as well as to rigorous

characterization of standard tasks. For instance, to factor is to transform an algebraic expression
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whose principle operation is addition or subtraction into one whose principle operation is

multiplication. In the service of such a goal, one explicitly examines the right and left hand sides of

the available rules to determine which ones accomplish the appropriate effect, and of those, which

can apply to the given circumstance. Thus strategies for deploying transformational rules for

particular purposes flow out of an explicit focus on the syntactic structure of expressions. 

This focus on structural descriptions carries with it a certain discursive discipline that is

widely ignored in the traditional algebra curriculum where structural and transformational data are

routinely conflated. Thus we speak of the factors of x2 – y2 when what we literally mean is factors

of another expression, (x – y)(x + y) that is transformationally equivalent to this one. The expression

x2 – y2 has no factors as its principal operation is subtraction rather than multiplication. The LSS

curriculum requires this kind of literalism to maintain a declarative focus against the seductive

tendency to match visual patterns.

The following contrived episode illustrates the sort of communicational possibilities opened

up by these more rigorous discursive practices. This interaction, similar to many the first author has

engaged in when using these methods instructionally, involves a student’s erroneous  cancellation

of the 3s in .

Teacher:  What rule are you using in this step?Student:  The cancellation rule for fractions.

Teacher:  Can you remind me what that rule is?

Student: It’s the rule that allows canceling a common factor of the numerator and 

denominator of a fractional expression.

Teacher:  Okay, let’s take a look at it.  What have you canceled?

Student:   The threes, because they’re factors, they’re multiplied.
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Teacher: Good, they are indeed factors, but are they factors of the numerator and

denominator?  Let’s check.  What is the principal operation of the numerator?

Student: Let’s see, there’s an exponentiation, a multiplication, and an addition. So the

principal operation is addition, the least precedent one according to the hierarchy

of operations.

Teacher:   Good, now what are the principal subexpressions called in this case?

Student: They’re called terms. ...Oh, I see, it has to be a factor of the whole numerator and

denominator to be canceled; not just part of it.

Such communicative possibilities can be contrasted with traditional algebra instruction in

which students and teachers talk past each other as they use words like “term” and “factor” without

structural grounding. Perhaps the teacher admonishes the student to make sure they are canceling

factors. But the structural distinction, so clear and tangible for the teacher, is not conveyed to the

student. Instead, the student learns only that they have done something wrong and need to do

something different. Absent an understanding of the structural fundamentals, what gets recorded for

the student is something about the visual shape of incorrect and correct applications. Eventually, with

persistence, the visual pattern matching processes becomes sufficiently refined as to constrain

incorrect applications. In this way, what begins as an opportunity for communication of structural

information is reduced to support for mindless matching of visual patterns.

Or perhaps the teacher, in the spirit of reform, asks the student to substitute values for

variables to see the falsity of their transformations in numerical domains; or finds a geometric area

model to illustrate geometric interpretations of algebra. In themselves, these activities are wholly

laudable. But as a substitute for dealing with the structural complexities of algebra, the segue into

referential context needs to be recognized for what it is: abandonment of the agenda of structural

algebra. For it is not obvious how an agenda of contextually rich applications ever could produce
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more than fragments of deductive rigor. A true agenda of structural algebra requires mastering a

sustained discourse of decontextualized, abstraction. As Bell (1936) put the structural case:

The very point of elementary algebra is simply that it is abstract, that is, devoid of

any meaning beyond the formal consequences of the postulates laid down for the

marks. ... We miss the whole point of algebra if we insist on any particular

interpretation. Algebra stands upon its own feet as a “hypothetico-deductive system.”

(p. 144)

THE LEXICAL SUPPORT SYSTEM IN HISTORICAL AND PHILOSOPHICAL

PERSPECTIVE

Bell’s (1936) pronouncements anticipated the “new math” movement of the 1960s and

1970s–the last concerted effort to orient the algebra curriculum around formal mathematical

structure.  However, critics of the new math agenda complained that its programs were “excessively

formal, deductively structured, and theoretical.... [and] fail to meet the needs for basic mathematical

literacy of average and low ability students” (National Advisory Committee on Mathematics

Education [NACOME], 1975, p. ix). In this final section, we contextualize our own approach by

distinguishing it from the new math curriculum, and by noting limitations of elementary algebra as

a structural enterprise when viewed from a non-representational epistemological perspective.

The New Math

Despite the shared general focus on structural algebra, our Lexical Support System has a

substantially different orientation from the new math. The new math curriculum was oriented by “the

concepts of set, relation, and function and by judicious use of broadly applicable mathematical

processes like deductive reasoning and the search for patterns” (Fey & Graeber, 2003, p. 524). As

they explain: 
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Much of the energy in proposals to accelerate and deepen student learning by

emphasizing unifying concepts and structures of mathematics was drawn from

developments in advanced mathematics, where a similar structural point of view was

leading to unification and generalization of traditional branches of the subject

through focus on pervasive abstract patterns. (p.  525)

To clarify the differences between the new math approach and our Lexical Support System,

we need to distinguish between two foundational aspects of modern mathematics: logicality and

formality/abstraction (Ernest, 1998). Logicality relies on explicit processes of inferential reasoning;

formality, on rigorous application of uninterpreted rules. 

The new math, as a departure from traditional algebra instruction, was notable for its logicist

intentions (Ernest, 1985). Indeed, an explicit intention of the new math was to distribute part of the

emphasis on deductive reasoning from the geometry curriculum to algebra:

One way to foster an emphasis upon understanding and meaning in the teaching of

algebra is through the introduction of instruction in deductive reasoning. The

Commission [on Mathematics] is firmly of the opinion that deductive reasoning

should be taught in all courses in school mathematics and not in geometry alone.

(College Entrance Examination Board, 1959, p. 23)

This logicist orientation of the new math curriculum may have been a major cause of its

difficulty for the general secondary student. Inferential reasoning is notoriously difficult for adults,

let alone adolescents (Evans, 1982). Logical inferences begin with a conditional statement consisting

of an antecedent and a consequent, one of which is asserted or denied in a subsequent statement. For

instance the logical principle modus ponens asserts the conditional, if p then q, and the antecedent,

p, from which one may deduce the truth of the consequent, q. There are three other inferential

possibilities starting with the conditional, if p then q: denial of the antecedent (assert not p, deduce

not q); affirmation of the consequent (assert q, deduce p); and modus tolens (assert not q, deduce not
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p). However, only modus ponens and its contrapositive modus tolens are logically sound. The other

two are common inferential errors asserted by a plurality of adults in various studies of conditional

reasoning (Evans, 1982).

In contrast to the new math, the LSS focus is on the formal rigor of algebraic derivation–the

processes whereby structural analyses are performed on expressions and equations, and

transformational rules applied according to explicit syntactic conditions. Now, there is a sense in

which an algebraic derivation can be accounted as a proof of equivalence. For instance, the

derivation 3x2 – 27 = 3x2 - 3@9 = 3(x2 – 9) = 3(x2 – 32) = 3(x – 3)(x + 3) demonstrates the equivalence

of  3x2 – 27 with 3(x – 3)(x + 3).  But in its logical structure, such derivations rely on biconditional

reasoning rather than conditional reasoning: 3x2 – 27 is true if and only if  3(x – 3)(x + 3) is true; and

each step of the derivation is logically reversible. For biconditional reasoning, all four of the

inferential possibilities discussed in the preceding paragraph are valid. Thus the requirement for

logical sophistication in such structural derivations is averted. It is only in relatively infrequent

special cases (e.g., multiplying by 0), that arguments are not bi-directional, and sophisticated

conditional reasoning demands arise. In this respect, the Lexical Support System approach is less

ambitious than was the new math. However, it may also prove a more tractable curriculum for the

general secondary student. 

Limitations of Elementary Algebra as a Structural Domain

There is another important sense in which the LSS approach departs from the new math

curriculum of the 1960s and 1970s. The new math intended to introduce algebra not only as a foray

into the logical methods of mathematics, but also to reflect the explicit content of abstract algebra

as a structural study of the number systems (e.g., Haag, 1961). Axioms of the number systems were

explicitly introduced as foundational to the subsequent transformations and manipulations (Osborne

& Kasten, 1992). However, this involved something of a sleight of hand with respect to

exponentiation rules. Reasonably, the new math never attempted to explore with secondary school

students the notions of limit or least upper bound that come from analysis rather than algebra and
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6Indeed, the exponential function cannot even be defined in the reals without using some limit
process: (What is 2x ?). Interestingly, there is a branch of mathematics known as real algebra that
seeks to find a set of algebraic (first order) axioms for exponentiation in the reals. But as Macintyre
(1979/1980) observed, this project is far from concluded:

The most interesting problem provoked by the above is that of showing that there are
no “exotic” laws, i.e. that every law is a consequence of the laws of +, x, -, -1, 0, 1
together with x1 = x,  xy+z = xyxz,  xyz = (xy)z,  (xy)z = xzyz. It seems difficult to prove
such a theorem by the methods of real algebra used above. (p. 197)

that are necessary for a rigorous characterization of the real numbers as a complete ordered field

(Royden, 1968). Instead, the formal treatment was restricted to the field properties (and existence

of roots of certain polynomials). A rigorous treatment of exponentiation is impossible from a purely

algebraic point of view.6

Our LSS approach cuts the Gordian knot that bound the new math curriculum to theoretical

content, by addressing structural algebra purely as mathematical method. Thus we are more eclectic

in the rules we are prepared to introduce, not restricting ourselves to field axioms, but including

exponent rules as well. Rather than addressing both content and methods of mathematics, our

curricular focus seeks only to enculturate students (Kirshner, 2002) to mathematical “habits of mind”

(Cuoco, Goldenberg, & Mark, 1996) by establishing a formal discursive classroom practice

involving explicit structural analysis of algebraic expressions and equations. 

On an ontological level, this departure from mathematical content accommodates the fact that

secondary school algebra developed historically as a system for manipulating expressions and

equations prior to the formalization of abstract algebra in the latter half of the 19th century (Kline,

1980). On an epistemological level, our non-representational view of cognition prepares us for the

fact that cognitively, the discursive practice of formality may be more an idealization than an actual

map of the processes involved in manipulating algebraic symbols. Although many aspects of

elementary algebra symbol manipulation are easily captured by formal rule structures, Kirshner

(2001) argued attempting to force it wholly into such a mold results in unacceptably contrived



Visual Salience of Algebra 46

variations that are psychologically and pedagogically implausible. For instance a consistent binary

interpretation of addition would require that x + y + z be interpreted as (x + y) + z.  But such a formal

interpretation renders such relatively simple manipulations as commuting the two central terms of

the polynomial 3x + 2y + 2x + 5y into a complex undertaking: [(3x + 2y) + 2x] + 5y =

[3x + (2y + 2x)] + 5y = [3x + (2x + 2y)] + 5y = [(3x + 2x) + 2y] + 5y = (3x + 2x) + (2y + 5y). Longer

renditions of the same problem quickly become intractable. 

A typical fix is to treat addition as an n-ary operation (i.e., as leaving the expression x + y + z

essentially unparsed [see Drouhard, 1988; Ernest, 1987]). This resolves the problem of complexity,

but only at the price of eliminating subtraction as an operation. For without the usual parsing rule,

we must represent subtraction as addition of a negative to protect against application of the

commutative law for addition in such expressions as x – y + z to produce (the non-equivalent)

x – z + y.  But to consistently represent subtraction as addition of a negative then requires that, say,

the difference of squares rule be interpreted as the sum of a square and the negation of a square rule.

In such cases, we must confront the fact that the rigorous consistency we prize so much in

formal mathematical discourse can be fully imposed on students of elementary algebra only at the

cost of radical disconnection from the cognitive processes that ultimately root our fluent algebraic

manipulation skills. This is part of the cost of tangling with non-representational notions of cognition

and learning. For, from a connectionist standpoint:

Personal rationality ... results from turning the social process of justification inward

upon one’s own thoughts ... a kind of self-checking. ... Rules, thus, may play an

important role as knowledge that enters into computations, but this is a

fundamentally different role from the one traditionally conceived by philosophers and

cognitive scientists, where rules constitute the computational algorithms themselves.

(Bereiter, 1991, p. 14)
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The pedagogical implication is that the Lexical Support System approach sketched above

actually is a balancing act between the significant structural elements of algebra that can be

articulated to facilitate students’ apprehension of algebra as a formal discourse, and minutiae of

representation that only can be formalized at the cost of revealing the limitations of such a discourse

in the actual conduct of algebraic operations. There is an irony to enculturating students to

mathematics as an explicit structural enterprise through an inherently astructural mathematical

domain like elementary algebra symbol manipulation. But as Kirshner (2001) concluded (see also

Gee’s [1992] theory of the social mind):

Engaging students in rationalizing their internal processes doesn’t mean that those

processes actually need to be rational. Logical discourse comes from the social

function of rationalizing, not from engagement with inherently logical artifacts. (p.

98)
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