[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [xmca] a minus times a plus



Thinking in terms of minus and plus along number axes goes to the very heart of how to think in terms of how a typical CNC milling machine moves.
These are large milling machines that, without making this more  
complicated, essentially move in three axes, x, y and z.  The programs  
work by "zeroing out" each axis at a given point in relationship to  
the part being cut, and then commanding the cutter to go to specific  
points along the x, y and z axes to create cutter paths that machine  
the part.  CNC mill operators (in 1980's-90's generation technology)  
usually have to manually move the machine to set cutters, otherwise  
have to move the machine around for a variety of reasons, including  
sometimes making rather intricate tooling moves, and adjust cutter  
paths during cuts when the part is coming out too thick or thin, or  
wide or narrow.
Getting plus and minus right really, really matters.  Go the wrong way  
- get minus and plus mixed up - even just a small fraction of an inch,  
and you can scrap the part, break the cutter, damage the tooling  
surfaces, wreck tools, knock the spindles out of alignment, put the  
machine down for hours or days, and otherwise cause thousands or more  
dollars in damage - and otherwise ruin your day.
I did a lot of training of operators on spar mills at Boeing over the  
years.  I was just an operator myself, but enjoyed doing this, and had  
something of a knack for it.  One of the reasons Boeing needed some of  
this training was to transition a whole bunch of "conventional"  
milling machine operators to CNC (computer numerical controlled)  
machines.  This was interesting because the idea of running a machine  
along numerically designated axes was often new to them.
So I got to look inside the heads of a lot of people who were  
grappling with numbers and axes in a new way, and this minus and plus  
business of course came up all the time.  I am a little off-topic here  
in that it is rarely, if ever, necessary to **multiply** anything by a  
negative number when running a spar mill.  But just **adding** and  
**subtracting** negative numbers - especially in complex successions -  
and moving the machine exactly where you wanted to go could get  
surprisingly complicated to wrap one's brain around.  Mistakes were  
common, and very experienced operators could make them, too.
In classes for the conventional operators who had never been exposed  
to CNC technology, I used the idea of a trip odometer on a car that  
only moved forward and backward 100 feet.  I explained that you can  
zero it out anywhere, and move back and forth all you want, and you  
will always be a specific distance from where you started.  That is  
basically how the relative register on the machine works, and most  
grasped the idea as second nature.  There is also an absolute register  
on the machine, which  has a permanent zero position for each axis, so  
it is important to know which one is which when you are looking at the  
screen for axis position.  Where and how that permanent position gets  
set is still another question.
The biggest trick in running a spar mill or any such CNC machine is to  
be able to think in terms not of just moving in one, but *three* axes  
at once.  In the case of our usual spar mill, we ran with two spindles  
at once, each with their own axis system - which made everything more  
complicated, now having to keep in mind things like whether your  
spindles are being programmed in "mirror mode" so the two parts come  
out as mirror images of each other.
The operators have to routinely keep precise track of which direction  
is minus and plus, and precisely which axis or axes they are concerned  
with in a given circumstance.  Running a mill is something of an  
ongoing multi-dimensional puzzle with lots of little tricks and  
misdirections to fool the operator into thinking one thing when  
something else is true, or looking in one direction and forgetting to  
look in another.  Believe me, under pressure, in these conditions of  
complexity, and where can be so little or no room for error, keeping  
minus and plus straight all day is not always so easy!
Working with many operators over the years, I could see that some were  
very sharp about how the CNC axis system worked, could read programs  
fluently, write their own, etc.  And then there were a few who had  
trouble even grasping the basic idea of negative numbers.
There was one fellow, then in his 40's, who was having a hell of a  
time with the concept of negative numbers.  I spent a few sessions  
with him trying to figure out a way to get negative numbers to make  
sense to him as a "theory" or "concept" so he could do some routine  
things more confidently, and not run into trouble, as he not  
infrequently did - often by playing it safe and just not doing some  
things, which sometimes caused problems, too.
I tried everything I could, using paper and pencil, moving the machine  
around and watching the screen together, using rulers and number  
scales and moving things back and forth over them, and anything else I  
could think of.  He would get lost as to "where he was" as the objects  
or symbols moved back and forth along an axis, especially if he  
started at a negative numbered position.  Something about the concept  
just wouldn't stick.
I finally made a breakthrough when I related moving the machine back  
and forth along an axis - to money in his pocket!  "Suppose you start  
with $100, and then you spend $30 ... and then I give you $40 ...  
following me? (yes) ... and then you spend another $20 ..."  Without  
fail, he always knew EXACTLY how much money he had!  The idea of  
negative numbers started to fall into place after that.
Luckily, I didn't have to try to explain to him why -8 * -8 = 64.

- Steve







On Apr 27, 2009, at 5:34 PM, Wolff-Michael Roth wrote:

Can't you think like this---perhaps it is too much of a physicist's thinking. We can think of the following general function (operator in physics) that produces an image y of x operated upon by A.
y = Ax

if x is from the domain of positive integers, then A = -1 would produce an image that is opposite to the one when A = +1, the identity operation.
Conceptually you would then not think in terms of a positive times a  
negative number, but in terms of a positive number that is projected  
opposite of the origin on a number line, and, if the number is  
unequal to 1, like -2, then it is also stretched.
The - would then not be interpreted in the same way as the +

Cheers,
Michael




On 27-Apr-09, at 4:16 PM, Ed Wall wrote:

Mike

It is simply (of course, it isn't simple by the way) because, the negative integers (and, if you wish, zero) were added to the natural numbers in a way that preserves (in a sense) their (the natural numbers) usual arithmetical regularities. It would be unfortunate if something that was true in the natural numbers was no longer true in the integers, which is a extension that includes them. Perhaps the easiest way to the negative x positive business is as follows (and, of course, this can be made opaquely precise - smile):
3 x 1 = 3
2 x 1 = 2
1 x 1 = 1
0 x 1 = 0

so what, given regularity in the naturals + zero) do you think happens next? This thinking works for, of course, for negative times negative. The opaque proof is more or less as follows.
Negative numbers are solutions to natural number equations of the  
form (I'm simplifying all this a little)
                     x + a = 0    ('a' a natural number)

and likewise positive numbers are solutions to natural number equations of the form
                    y = b          ('b' a natural number)


Multiplying these two equations in the usual fashion within the natural numbers gives

            xy + ay = 0

or substituting for y


      xy + ab = 0

so, by definition, xy is a negative number.

Notice how all this hinges on the structure of the natural numbers (which I've somewhat assumed in all this).
Ed



On Apr 27, 2009, at 6:47 PM, Mike Cole wrote:

Since we have some mathematically literate folks on xmca, could someone
please post an explanation of why

multiplying a negative number by a positive numbers yields a negative
number? What I would really love is an explanation
that is representable in a manner understandable to old college professors
and young high school students alike.

mike
_______________________________________________
xmca mailing list
xmca@weber.ucsd.edu
http://dss.ucsd.edu/mailman/listinfo/xmca


_______________________________________________
xmca mailing list
xmca@weber.ucsd.edu
http://dss.ucsd.edu/mailman/listinfo/xmca

_______________________________________________
xmca mailing list
xmca@weber.ucsd.edu
http://dss.ucsd.edu/mailman/listinfo/xmca
_______________________________________________
xmca mailing list
xmca@weber.ucsd.edu
http://dss.ucsd.edu/mailman/listinfo/xmca