kshop on Fields: Omar Clay, omar@physics.ucsd.edu line: 1. Brief history 2. Defining Characteristics 3. Explorations & Demonstrations 4. Homework Brief history a. Early 1600's William Gilbert (1544-1603): author of De Magnete; basics of B fields Demo: dividing bar magnet => 2 magnets, dipolar Des Cartes (1596-1650): Cartesian coordinate system, momentum, dualism Galilleo (1564-1642): Momentum conservation, discuss energy Demo: 5 colliding pendula b. Late 1600's Newton (1642-1727): Force, Gravitational Force Law: $F q = G m 1 m 2 / r^2$ Problem of Action at a Distance, c. 1700's Ben Franklin (1706-1790) Electric Charge Demo: PVC pipe Augustin Coulomb (~1785) Static Electric Force Law: $F = k q 1 q 2 / r^2$ d. 1800's Hans Oersted: interaction between E and B Ohm Marie Ampere: B = u o/2*pi (I/r)Demos: Current => B use coil and compass/ gauss meter Right hand rules for linear wires and coils e. Michael Faraday (1791-1867): V coil = -A dB/dt Member of lower class in England, little/no formal ed., talented experimentalist, worked for Royal Society, "I cannot afford to get rich" Proposed the concept of a Field to understand Action at a Distance problemoriginally scorned. Demo: Drop a magnet through a coil and watchvoltage/current on a meter Fields: a. Types: Gravitational Electric Magnetic (actually intimately linked to electric fields) Atomic/ Nuclear b. Properties: 1. Transmit Force/ Momentum Demo: magnetic chaos spinner 2. Vector Nature Demo: magnetic probe, iron filings, ferrofluid 3. Store Energy Demo: magnetic elevation 4. Preferred Media/material Demo: iron chips allow magnet to be picked up c. Representations & Intuition

 source/ termination points "charges" outline sources, equations, qualitatively discuss curl and divergence of fields interactions b/n field lines
d. Interactions b/n B and E, briefly discuss how moving relative to a static B/E field transforms in part to a E/B field, Special Relativity
e. Eventually E& M waves
<pre>xplorations/ Demonstratons a. Use probes to map out field lines around disc magnets b. Hypothesize and test why magnets feel forces perpendicular to their poles c. Play w/ other demos d. induction in copper tube</pre>
Homework Questions a. In several sentences explain what is a vector field 1. it represents a potential force 2. acts on charged objects 3. strength and direction
b. Why was the concept introduced?1. action at a distance
c. What types of fundamental forces are there? d. Mention what preferred media is about.
e. What are the sources of Fields?f. given the formula for B due to a wire and the right hand rule;1. will parallel wires w/ current running in the same direction attract,
repel, or have no effect on each other?

2. For the wires to feel 1/4 of the force they do at a distance r, what distance from each other should they be placed at? A: 4 times farther away.g. Given that the force between two dipoles (on axis) falls off w/ 1/r³ how much farther away should two dipoles be placed to be 1/8 of the force they feel when r away from one another? A: twice the distance.