From design experiments to formative interventions

Yrjö Engeström
CRADLE, University of Helsinki

Abstract
So-called “design experiments” have been presented as a radical alternative to traditional experimental designs in behavioral sciences. A closer scrutiny of design experiments shows that they share the basic linear methodology of traditional randomized controlled trials, and thus ignore resistance and agency of learners as a source of surprise and novelty. Formative interventions based on Vygotsky’s principle of double stimulation offer an alternative that builds on and purposefully fosters learners’ agency. Formative interventions may be characterized with the help of an argumentative grammar which proposes (a) the collective activity system as a unit of analysis, (b) contradictions as a source of change and development, (c) agency as a crucial layer of causality, and (d) transformation of practice as a form of expansive concept formation. These four epistemic tenets are concretized with the help of analysis of data from a Change Laboratory formative experiment conducted in a Finnish hospital. The analysis shows that double stimulation is a multi-layered and longitudinal process in which both the initial problem situation (first stimulus) and the mediating conceptual tool (second stimulus) are reformulated and enriched in successive steps. Such a process of double stimulation generates a thirdness, a new concept for the activity under transformation.

Keywords
agency, contradiction, design experiment, double stimulation, formative intervention

Corresponding author:
Yrjö Engeström, CRADLE, Institute of Behavioural Sciences, P.O. Box 9 (Sitauuorenperä 3A), FIN-00014 University of Helsinki, Finland.
Email: yrjo.engestrom@helsinki.fi

Human learning takes place within and between complex, continuously changing activity systems. Learning needs themselves are increasingly opaque. It is not at all clear just what needs to be learned to cope with the demands of complex activities and global networks in constant turmoil. Humans—practitioners, teachers, students—are intentional and interactive beings who keep interpreting and reinterpreting the challenges and tasks they face in their own, multiple, changing, and often unpredictable ways. They do not neatly obey the laws of linear causality. The practical usefulness and ecological validity of research on learning based on classical well-controlled experiments are more questionable than ever.

In the past few years, the United States educational authorities have aggressively launched legislation and national guidelines that define the “gold standard” of educational research. The “gold standard” emphasizes the use of randomized controlled trials, the selection of valid control groups, and “scalability” implying large statistical samples and multiple research sites.

The “gold standard” correctly sees educational research as interventionist research. The randomized control trials are meant to assess the effectiveness of educational interventions. The model of intervention research is taken from fields such as medicine and agriculture. As one observer put it:

For instance, if I want to test the effectiveness of weed control measures, I randomly assign different plots of crops to the experimental or control conditions. Then, they all get treated the same otherwise as far as weather, fertilizer, hours of day light and other pests. The crops are monitored and observations are made throughout the growing season and a person might be able to see the result visually if the results are remarkable enough. But the telling evidence is in the yield, when the crops are harvested. If there is a significant difference in yield in all the experimental plots as opposed to the control plots, then we might attribute it towards the independent variable, which in this case is weed control. (As cited in Engeström, 2009b, p. 318)

The “gold standard” thinking in educational research starts from the assumption that researchers know what they want to implement, how they want to change the educational practice. In other words, the intervention and its desired outcomes are well defined in advance. The task of research is to check whether or not the desired outcomes are actually achieved.

Educational researchers are in a bind. On the one hand, many of them recognize the limits of randomized control trials and seek ways to conduct and legitimize more practice-based and creative and theoretically ambitious research. On the other hand, there are strong administrative, financial, political, and “scientific” pressures to stick to the proven assumptions and methodological rules of positivist science. It is no wonder that many attempts at methodological innovation turn out to be weak compromises.

In this paper, I will propose a radical methodological approach that I call formative interventions. The approach is inspired by the methodological ideas and experiences of L.S. Vygotsky and his colleagues and students. My version of this legacy has been worked out over a period of some 20 years of research in the Finnish school of developmental work research (Engeström, 2005; Engeström, Lompscher, & Rüikriem, 2005).

I will begin by examining the recent interest in so-called “design experiments” or “design research,” which I find to be still captive to the linear view of interventions typical
of the “gold standard.” After that, I will discuss the contribution of some sociological analyses of interventions, pointing toward the crucial importance of agency in developing a viable interventionist methodology. I will present Vygotsky’s central ideas of the interventionist methodology called “double stimulation,” and conclude by pointing out four key differences between linear and formative interventions. This leads me to present “the argumentative grammar” of formative interventions with the help of four foundational epistemic threads or tenets that inform the methodology.

I will illustrate the methodology of formative interventions by analyzing data from an intervention study my research group recently carried out in Finland with the help of the Change Laboratory toolkit. This study concerns the formation of a new mode of working in the Central Surgery Unit of the Oulu University Hospital. This case analysis leads me to elaborate on the layered character of formative interventions. At the end of the paper, I will examine how the four tenets of the suggested argumentative grammar were implemented and what insights they generated in the hospital case.

Design experiments—design research

In this section, I will take up problematic aspects in recent literature on design experiments, or design research. I will not go back to the early formulations of this research approach (Brown, 1992; Collins, 1992), as their main arguments are widely known.

In literature on design experiments or design research the focus of attention is moved from isolated individual learners to entire learning environments or learning ecologies.

Design experiments ideally result in greater understanding of a learning ecology—a complex, interacting system involving multiple elements of different types and levels—by designing its elements and by anticipating how these elements function together to support learning. (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p. 9)

Many proponents of design research use the notion of dynamical learning environments (DLEs) to describe their unit of analysis. For example, Barab and Kirschner (2001) define dynamical learning environments “as continually evolving as the system components (students, teachers, class assignments, resources) that constitute DLEs reciprocally interact in ways that both stabilize and destabilize the system” (p. 8).

These notions of complex units of analysis suffer from vagueness. Talking in general terms about systems, dynamics, and components is not enough. What exactly might be a useful model of the anatomy of such a dynamic learning environment? If design researchers do not specify and model the crucial components and relations of their proposed units of analysis, a decisive connection between theory and methodology is severed (for a critique of the concept of “learning environment,” see Engeström, 2009a).

In discourse on “design experiments,” it seems to be tacitly assumed that researchers make the grand design, teachers implement it (and contribute to its modification), and students learn better as a result. Scholars do not usually ask: Who does the design and why? This linear view is associated with notions of perfection, completeness, and finality. This is exemplified by the use of the absurd notion of capturing “all variables.”

In design experiments there are many dependent variables that matter, though the researchers may not pay attention to them all [emphasis added]. ... The goal is to identify all [emphasis added] the variables, or characteristics of the situation, that affect any dependent variable of interest. (Collins, Joseph, & Bielaczyc, 2004, p. 20)

As a byproduct, Collins et al. endorse a variable-oriented approach to research without questioning the extremely problematic notion of causality behind it (Maxwell, 2004).

In the account of Collins and colleagues (2004), the methodology of design research is basically a linear progression of six steps, starting from “implementing a design” and ending with “reporting on design research” (p. 33). As the process begins with implementation, the making of the design in the first place is not even included in the methodology. Thus, there is no need to problematize the issue of who makes the design and guided by what theory or principles. In a similar vein, Cobb and his co-authors (2003) seem to take it for granted that it is the researchers who determine the “end points” for the design experiment.

In addition to clarifying the theoretical intent of the experiment, the research team must also specify the significant disciplinary ideas and forms of reasoning that constitute the prospective goals or endpoints for student learning. (p. 11)

The stepwise linear notion of design research is also explicated by Bannan-Ritland (2003, p. 22). Cyclic iterations serving the refinement of the design complement but do not challenge the basically linear image. This is made clear by Middleton, Gorard, Taylor, and Bannan-Ritland (2008), who depict both the traditional model of experimental research and the model of design research with the help of cyclic images, then conclude that “design experiments are valuable methodological additions to the standard procedures that already include randomized controlled trials and other traditional experimental studies” (p. 42).

This linear view ignores what we know of interventions as contested terrains, full of resistance, reinterpretation, and surprises from the actors below. Cobb and co-authors do mention that design experiments conceived by researchers create discontinuity—but that does not seem to require any further reflection.

The intent is to investigate the possibilities for educational improvement by bringing about new forms of learning in order to study them. Consequently, there is frequently a significant discontinuity between typical forms of education (these could be studied naturalistically) and those that are the focus of a design experiment. (Cobb et al., 2003, p. 10)

The main difference between “gold standard” interventions and design experiments seems to be that the former expects the design of the intervention to be complete at the outset while the latter, recognizing the complexity of educational settings, expects the design to proceed through multiple iterations of “refinement.” But even design experiments aim at closure and control. The emphasis on completeness, finality, and closure is condensed in the idea of design experiments as “refinement.” The implication is that the researchers have somehow come up with a pretty good model which needs to be perfected in the field.
Design experiments were developed as a way to carry out formative research to test and refine educational designs based on theoretical principles derived from prior research. This approach of progressive refinement in design involves putting a first version of a design into the world to see how it works. Then, the design is constantly revised based on experience, until all the bugs [emphasis added] are worked out. (Collins et al., 2004, p. 18)

Design research should always have the dual goals of refining both theory and practice. (Collins et al., 2004, p. 19)

Collins et al. (2004, pp. 18–19) compare educational design research to the design of cars and other consumer products, using Consumer Reports as their explicit model for evaluation. They don’t seem to notice any significant difference between finished mass products and such open-ended, continuously co-configured products as educational innovations (for co-configuration, see Engeström, 2008; Victor & Boynton, 1998). A strange obsession with completeness and control runs like a red thread through their argument.1 “Thus, in the jigsaw, all pieces of the puzzle come together to form a complete understanding [emphasis added]” (Collins et al., 2004, p. 23)

A similar fascination with completeness is demonstrated by Middleton et al. (2008) in their notion of a “compleat” design experiment which culminates in a “definitive test.”

What this overlooks is that “one can never get it right, and that innovation may best be seen as a continuous process, with particular product embodiments simply being arbitrary points along the way” (von Hippel & Tyre, 1995, p. 12). Perhaps more importantly, much of the literature on design experiments seems to take for granted the traditional designer-led model of innovation and ignore the recent turn toward user-led or “democratic” innovations (von Hippel, 2005).

To sum up, recent literature proposing design experiments or design research as a methodology for educational research suffers from serious built-in weaknesses. While there are many different versions of design research, it seems fair to conclude that the following weaknesses are quite pervasive. First, the unit of analysis is left vague. Secondly, the process of design research is depicted in a linear fashion, starting with researchers determining the principles and goals and leading to completion or perfection. This view ignores the agency of practitioners, students, and users. It seems blind to the crucial difference between finished mass products and open-ended social innovations, as well as between designer-led and user-led models of innovation process. Finally, in much of the literature on design experiments, a variable-oriented approach to research is tacitly endorsed, without questioning the underlying problematic notion of causality.

These limitations pertain to the general idea and approach of design experiments as explicated in key papers on the topic. There are certainly individual design experiment studies which in significant ways have been able to overcome some of these limitations. However, recent collections on design research (Kelly, Lesh, & Baek, 2008; van den Akker, Gravemeijer, McKenney, & Nieveen, 2006) mainly enrich and elaborate rather than question and challenge the basic assumptions laid out in key papers a few years earlier.

Lessons from sociological intervention research

Sociological intervention studies differ from educational ones in that there are usually no safe institutional walls to protect the intervention from the vagaries of the outside world. Perhaps this is why the linear view I observed in design research is much less easily adopted in sociology. A good case in point is the work of Norman Long (2001).

Intervention is an on-going transformational process that is constantly re-shaped by its own internal organizational and political dynamic and by the specific conditions it encounters or itself creates, including the responses and strategies of local and regional groups who may struggle to define and defend their own social spaces, cultural boundaries and positions within the wider power field. (Long, 2001, p. 27)

Long uses words like “struggle,” “strategy,” “power,” and “position”—words that are conspicuously absent in recent literature on design experiments (in fact, not only these words but also the terms “agency,” “motivation,” and “resistance” are missing in the index of the recent handbook of design research; Kelly et al., 2008).

Crucial to understanding processes of intervention is the need to identify and come to grips with the strategies that local actors devise for dealing with their new intervenors so that they might appropriate, manipulate, subvert or dismember particular interventions. (Long, 2001, p. 233)

In other words, resistance and subversion are not accidental disturbances that need to be eliminated. They are essential core ingredients of interventions and they need to have a prominent place in a viable intervention methodology. Melucci (1996) extends this point into a threefold methodological guideline for intervention research.

What we must recognize is that actors themselves can make sense out of what they are doing, autonomously of any evangelical or manipulative interventions of the researcher. ... Secondly, we need to recognize that the researcher–actor relation is itself an object of observation, that it is itself part of the field of action, and thus subject to explicit negotiation and to a contract stipulated between the parties. ... Lastly, we must recognize that every research practice which involves intervention in the field of action creates an artificial situation which must be explicitly acknowledged. ... [A] capability of metacommunication on the relationship between the observer and the observed must therefore be incorporated into the research framework. (pp. 388–389)

In other words, interventions in human beings’ activities are met with actors with identities and agency, not with anonymous mechanical responses. If agency is not a central concern in the methodology, there is something seriously wrong with it.

In educational research, one of the few scholars who have taken this seriously is David Olson (2004).

Research in the human sciences, it may be argued, is less designed to dictate what one does than to provide information that agents, both teachers and students, can use in making informed decisions about what to do in the multiple and varied contexts in which they work. (p. 25)
Vygotsky's method of double stimulation

In his quest for a new psychology based on cultural mediation of higher mental functions, Vygotsky was very conscious of the need to build a methodology that would correspond to the character of the theory.

This methodology [study of reactive responses based on the S-R formula], which easily establishes the response movement of the subject, becomes completely impotent ... when the basic problem is the study of those means and devices that the subject used to organize his behavior in concrete forms most adequate for each given task. In directing our attention to the study of specifically these (external and internal) means of behavior, we must conduct a radical review of the methodology of the psychological experiment itself. (Vygotsky, 1999, p. 59)

The methodology Vygotsky, Leont’ev, and Luria developed has been characterized by different names. Vygotsky (e.g., 1997b, p. 68, 1997c, 1999, pp. 57–59) used at least the names “experimental-genetic method,” “instrumental method,” “historical-genetic method,” and “method of double stimulation,” somewhat interchangeably. In this paper, I will use the “method of double stimulation.”

As van der Veer and Valsiner (1991) put it, in double stimulation experiments, “the subject is put in a structured situation where a problem exists ... and the subject is provided with active guidance towards the construction of a new means to the end of a solution to the problem” (p. 169). Vygotsky (1978) himself described the methodology as follows:

The task facing the child in the experimental context is, as a rule, beyond his present capabilities and cannot be solved by existing skills. In such cases a neutral object is placed near the child, and frequently we are able to observe how the neutral stimulus is drawn into the situation and taken on the function of a sign. Thus, the child actively incorporates these neutral objects into the task of problem solving [emphasis added]. We might say that when difficulties arise, neutral stimuli take on the function of a sign and from that point on the operation’s structure assumes an essentially different character. (p. 74)

By using this approach, we do not limit ourselves to the usual method of offering the subject simple stimuli to which we expect a direct response. Rather, we simultaneously offer a second series of stimuli that have a special function. In this way, we are able to study the process of accomplishing a task by the aid of specific auxiliary means: thus we are also able to discover the inner structure and development of higher psychological processes. The method of double stimulation elicits manifestations of the crucial processes in the behavior of people of all ages. Tying a knot as a reminder, in both children and adults, is but one example of a pervasive regulatory principle of human behavior, that of signification, wherein people create temporary links and give significance to previously neutral stimuli in the context of their problem-solving efforts. We regard our method as important because it helps to objectify inner psychological processes ... (pp. 74–75)

It is important to note that the second stimuli, the mediating means, were not necessarily given to the participants in any ready-made form.

In experimental studies, we do not necessarily have to present to the subject a prepared external means with which we might solve the proposed problem. The main design of our experiment will not suffer in any way if instead of giving the child prepared external means, we will wait until spontaneously applies the auxiliary device and involves some auxiliary system of symbols in the operation. ... In not giving the child a ready symbol, we could trace the way all the essential mechanisms of the complex symbolic activity of the child develop during the spontaneous expending of the devices he used. (Vygotsky, 1999, p. 60)

Van der Veer and Valsiner (1991) point out the fundamental challenge this methodology poses to the experimenter who wants to control the experimental situation.

The notion of “experimental method” is set up by Vygotsky in a methodological framework where the traditional norm of the experimenter’s maximum control over what happens in the experiment is retained as a special case, rather than the modal one. The human subject always “imports” into an experimental setting a set of “stimulus-means” (psychological instruments) in the form of signs that the experimenter cannot control externally in any rigid way. Hence the experimental setting becomes a context of investigation where the experimenter can manipulate its structure in order to trigger (but not “produce”) the subject’s construction of new psychological phenomena. (p. 399)

In other words, the participant’s agency steps into the picture. To fully appreciate the radical potential of the methodology of double stimulation, we need to reconstruct Vygotsky’s more general conception of intentionality and agency. Vygotsky (1997b) described this artifact-mediated nature of intentional action as follows:

The person, using the power of things or stimuli, controls his own behavior through them, grouping them, putting them together, sorting them. In other words, the great uniqueness of the will consists of man having no power over his own behavior other than the power that things have over his behavior. But man subjects to himself the power of things over behavior, makes them serve his own purposes and controls that power as he wants. He changes the environment with the external activity and in this way affects his own behavior, subjecting it to his own authority. (p. 212)

Vygotsky (1997b) pointed out that voluntary action has two phases or “two apparatuses.” The first one is the design phase in which the mediating artifact or “the closure part of the voluntary process” (p. 213) is, often painstakingly, constructed. The second one is the execution phase or “actuating apparatus,” which typically looks quite easy and almost automatic, much like a conditioned reflex.

Classic examples of culturally mediated intentionality include devices we construct and use to wake up early in the morning. Vygotsky's examples of voluntary action are mostly focused on individual actors. This must not be interpreted as neglect of collective intentionality. According to Vygotsky’s famous principle, higher psychological functions appear twice: first intersubjectively, in collaborative action, and later intrapsychologically, internalized by the individual.

V.K. Arsen’ev, a well-known researcher of the Usuriysk region, tells how in an Udeg village in which he stopped during the journey, the local inhabitants asked him, on his return to
workplaces are bombarded by interventions from all kinds of outside agents (consultants, administrators, customers, competitors, partners, politicians, journalists). And inside the activity system, practitioners and managers incessantly make their own interventions. We as researchers should not expect nicely linear results from our efforts.

Toward an argumentative grammar

In his discussion of design research in education, Kelly (2004) took up the foundational issue of an “argumentative grammar” that is needed to formulate a viable methodology.

An argumentative grammar is the logic that guides the use of a method and that supports reasoning about its data. It supplies the logos (reason, rationale) in the methodology (method + logos) and is the basis for the warrant for the claims that arise. (p. 118)

I see the argumentative grammar as a set of basic epistemic ideas or threads that run through and connect theory, methodology, and empirical research in any serious research approach. Such epistemic ideas are at the same time both substantive assumptions about the nature of the objects of research and heuristic meta-level tools for the practical conduct of intervention, data collection, and analysis.

What, therefore, is the logos of design studies in education? What is the grammar that cuts across the series of studies as they occur in different fields? Where is the “separable” structure that justifies collecting certain data and not other data and under what conditions? What guides the reasoning with these data to make a plausible argument? (Kelly, 2004, p. 119)

I will take up four epistemic threads or tenets as elements of an argumentative grammar for the methodology of formative interventions. These threads are: (a) activity system as a unit of analysis, (b) contradictions as a source of change and development, (c) agency as a layer of causality, and (d) transformation of practice as a form of expansive concept formation. These four are not meant to be an exhaustive set.

Activity system as a unit of analysis

We may discern three generations in the evolution of the prime unit of analysis within cultural-historical activity theory (Engeström, 2001). The first generation, based on Vygotsky’s work, centered on mediated action as a unit of analysis (see Zinchenko, 1985). The second generation, based on Leont’ev’s (1978, 1981) work, took the collective activity system as its molar unit of analysis. At present, many activity theorists in various parts of the world are focusing on interactions among two or more activity systems, which requires a third generation unit of analysis where minimally two activity systems have a partially shared object.

The anatomy of an activity system may be depicted with the help of the triangular model that I have developed elsewhere (Engeström, 1987). As is evident in Figure 1, activity theory sees the object as the crucial factor that gives durable direction, purpose, and identity to an activity. As activity systems become fragmented by their inner
Contradictions as a source of change and development

What makes change possible in the first place? This is where activity theory builds on the concept of contradictions. No terrain of activity, no matter how stable and resistant, is free of inner contradictions. Contradictions are not the same as problems or conflicts. Contradictions are historically accumulating structural tensions within and between activity systems. The primary contradiction of activities in capitalism is that between the use value and exchange value of commodities. This primary contradiction pervades all elements of our activity systems. An activity system is constantly working through tensions and contradictions within and between its elements. Contradictions manifest themselves in disturbances and innovative solutions. In this sense, an activity system is a virtual disturbance- and innovation-producing machine.

Activities are open systems. When an activity system adopts a new element from the outside (e.g., a new technology or a new object), it often leads to an aggravated secondary contradiction where some old element (e.g., the rules or the division of labor) collides with the new one. Such contradictions generate disturbances and conflicts but also innovative attempts to change the activity, making the zone of proximal development an invisible battleground. The stiff rules lagging behind and thwarting possibilities opened up by advanced new instruments are a common example.

Contradictions are not just inevitable features of activity. They are “the principle of its self-movement and ... the form in which the development is cast” (Il’enkov, 1977, p. 330). This means that new qualitative stages and forms of activity emerge as solutions to the contradictions of the preceding stage or form. This in turn takes place in the form of “invisible breakthroughs,” innovations from below.

In reality it always happens that a phenomenon which later becomes universal originally emerges as an individual, particular, specific phenomenon, as an exception from the rule. It cannot actually emerge in any other way. Otherwise history would have a rather mysterious form. Thus, any new improvement of labour, every new mode of man’s action in production, before becoming generally accepted and recognized, first emerges as a certain deviation from previously accepted and codified norms. Having emerged as an individual exception from the rule in the labour of one or several men, the new form is then taken over by others, becoming in time a new universal norm. If the new norm did not originally appear in this exact manner, it would never become a really universal form, but would exist merely in fantasy, in wishful thinking. (Il’enkov, 1982, pp. 83–84)

For formative interventions, the key implication of contradictions as source of change and development is that interventions need to respond to and build on the energy of contradictions in the affected activity systems. This requires that formative interventions are grounded in historical analysis of the activity system, and that empirical manifestations of contradictions in the ongoing activity are recorded and analyzed as part and parcel of the intervention (Engeström & Sannino, 2011).

Agency as a layer of causality

Maxwell (2004) calls the traditional notion of causality the “regularity” approach. It holds that we cannot directly observe causation, only the regularities in the relationships between events. The regularity approach necessarily entails a variable-oriented view of research. Causation is understood as a systematic relationship between variables rather
than a causal process. In contrast to variable-based research, process-oriented research believes that causation can actually be observed and reconstructed as a real sequence of events. It uses historical methods and narrative evidence, as well as close observation and recording of unfolding chains of events.

But how does one observe and reconstruct chains of events among human beings? What kind of interpretive lenses do we need for that? Eskola (1999, p. 111) suggests that the answer lies in three facets: (a) the structure and development of the activity in which the actors are involved and its meaning to the different actors; (b) the laws and rules that actors take into account in this activity; and (c) the logics on the basis of which they do so. Eskola presents the basic explanatory schemas of traditional variable-oriented research, on the one hand, and of “realistic research in human action,” on the other hand. His realistic paradigm focuses on the fact that humans do not merely react as physical objects; they act based upon their activities, interpretations, and logics. For the sake of simplicity, we may call this the interpretive layer of causality.

But there is more to causality in human contexts. Human beings not only interpret, they also face contradictions between multiple motives embedded in and engendered by their historically evolving communities and objects. This is the layer that makes humans look irrational and unpredictable (Engeström, 1989). This adds another layer to human causality. I call it the contradictory layer. What is still missing is the human potential for agency, for intentional collective and individual actions aimed at transforming the activity. Thus, I complete the picture by adding an agentic layer (Figure 2).

Here I remind the reader of the earlier discussion of Vygotsky’s view of agency as originating in the use of external artifacts to reach a redefinition of a situation.

In experiments involving meaningless situations, Lewin found that the subject searches for some point of support that is external to him and that he defines his own behavior through this external support. In one set of experiments, for example, the experimenter left the subject and did not return, but observed him from a separate room. Generally, the subject waited for 10-20 minutes. Then, not understanding what he should do, he remained in a state of oscillation, confusion and indecisiveness for some time. Nearly all the adults searched for some external point of support. For example, one subject defined his actions in terms of the striking of the clock. Looking at the clock, he thought: “When the hand moves to the vertical position, I will leave.” The subject transformed the situation in this way, establishing that he would wait until 2:30 and then leave. When the time came, the action occurred automatically. By changing the psychological field, the subject created a new situation for himself in this field. He transformed the meaningless situation into one that had a clear meaning. (Vygotsky, 1987, p. 356)

Vygotsky’s description of Lewin’s experiment captures all the three layers of Figure 2 in a simplified form. Initially, the participant interprets the situation as an experiment in which one must follow the rules of the experimenter. When nothing happens, a contradiction emerges between those expected rules and one’s quest for meaning; there is a period of confusion, which could lead to unpredictable and “irrational” actions. However, by using an external cultural artifact such as the clock, the participant is able to transform the situation and take agentic action. Notice that agentic action in its rudimentary forms may look like non-action, or mere resistance—such as leaving the room in the experiment. It is nonetheless a radically different action from that of passive waiting or “irrational” making of noise.

Breaking away from a pre-existing pattern of activity requires expansive agency. This can be achieved by employing external cultural artifacts that are invested with meaning and thus become powerful mediating signs that enable the human being to control his or her behavior from the outside. This is the mechanism of double stimulation. It is often interpreted merely as a way to enhance performance in specific tasks of learning and problem solving. Such a technical interpretation neglects the developmental significance of double stimulation as essentially a mechanism of building novel concepts, agency, and will.

For formative interventions, the key implication of agency as a layer of causality is that the participants’ agentic actions need to be recorded and analyzed as an important outcome. The interventionist should expect and endorse actions that question his or her plans and take the intervention in surprising directions.

Transformation of practice as a form of expansive concept formation

Expansive learning (Engeström, 1987, 2001) is a process of concept formation. This framework suggests that the very idea of concepts needs to be redefined. As Hull and Greeno (2008), point out, “[C]oncepts and their meanings develop and evolve in settings of practice and are maintained in practices because they are useful in conducting the community’s activities” (p. 213). In this perspective, concepts are consequential for the lives of those who work with them. Such concepts are embodied, embedded, and distributed in human activity systems equipped with multi-layered and multi-modal representational infrastructures or instrumentalities. Complex, consequential concepts are inherently polyvalent, debated, incomplete, and often “loose.” Different stakeholders produce partial versions of the concept. Thus, the formation and change of concepts involves confrontation and contestation as well as negotiation and blending. Concepts are future-oriented. They are loaded with affects, hopes, fears, values, and collective intentions. Of particular interest are “possibility concepts” (Engeström, 2007a) and...
perspectival concepts" (Engeström, Pasanen, Toivainen, & Haavisto, 2005) which explicate time-bound collective intentions or visions of future development and change. The formation of complex concepts is not just internalization of culturally given concepts but above all externalization, generation of culturally new concepts (which also need to be internalized in use).

Expansive learning leads to the formation of a new activity, and change in a pattern of activity oriented to the object. This process, known as ascending from the abstract to the concrete, involves the formation of a theoretical concept of the new activity, based on grasping and modeling the initial simple relationship, the "germ cell," that gives rise to the new activity and generates its diverse concrete manifestations (Davydov, 1990).

For formative interventions, the key implication of transformation of practice as concept formation is that the analyst needs to trace steps of expansive concept formation, from early unstable attempts and suggestions to stabilization steps such as naming and modeling.

The Change Laboratory

In the mid-1990s, researchers in the CRADLE (formerly Center for Activity Theory and Developmental Work Research) at the University of Helsinki developed a new intervention toolkit under the generic name of Change Laboratory (Engeström, 2007b; Engeström, Virkkunen, Helle, Pihalaja, & Poikela, 1996). Variations of this toolkit have been used in a large number of intervention studies in settings ranging from post offices and factories to schools, hospitals, and newsrooms. The Change Laboratory serves as a microcosm in which potential new ways of working can be experimented and experimented with (Engeström, 1987, pp. 277-278).

A Change Laboratory is typically conducted in an activity system that is facing a major transformation. This is often a relatively independent pilot unit in a large organization. Working practitioners and managers of the unit, together with a small group of interventionist-researchers, conduct five to ten successive Change Laboratory sessions, often with follow-up sessions after some months. When feasible, customers or patients are invited to join Change Laboratory sessions, in which their particular cases are analyzed in detail. Change Laboratories are also conducted as boundary-crossing laboratories with representatives from two or more activity systems engaged in collaboration or partnership.

The Change Laboratory is built on ethnographic data from the activity setting in which it is conducted. Critical incidents, troubles, and problems in the work practice are recorded and brought into Change Laboratory sessions to serve as first stimuli. This "mirror material" is used to stimulate involvement, analysis, and collaborative design efforts among the participants.

To facilitate analysis and resolution of the problems, interventionists typically introduce conceptual tools such as the triangular models of activity systems (see Figure 1) as a second stimulus. Commonly the conceptual models offered by the interventionists are replaced or combined with mediating conceptualizations and models formulated by the participants.

The participants are challenged to use the mediating second stimulus as an instrument in the design of a new concept for the activity they are trying to transform. Implementation of the designed new solution is usually initiated while the Change Laboratory sessions are still running, in the form of pilot experiments. The implementation typically leads to a richer and more articulated concept.

In the analysis and design, the participants are asked to move between the past, the present, and the future. This means that historical origins of the current problems are dug up and modeled, and the ideas toward a future concept are played with in anticipatory simulations such as role play.

The laboratory sessions themselves are videotaped for analysis and used as stimuli for reflection. The procedure allows for the collection of rich longitudinal data on the actions and interactions involved in cycles of expansive learning (Engeström, 2001).

Recapturing the object in a hospital surgery unit

As I pointed out above, formative interventions differ from linear interventions (including design experiments) with regard to the starting point, the process, and the outcome. In the following, I will examine data from a recent Change Laboratory intervention in terms of these three aspects.

The Central Surgery Unit of the University Hospital of the City of Oulu in northern Finland invited my research team to work with their staff in the fall of 2006. The unit was in a near-crisis situation, suffering from shortages of qualified staff and excessive workloads which led to temporary closures of some of the operating theaters. This, in turn, led to longer waiting times and queues for patients, and to negative publicity. The pressures were intensified by the fact that new legislation required all hospitals in the near future to guarantee patients access to care with short waiting times, which meant that the hospitals would have to take determined administrative action to cut their queues. The management of the Central Surgery Unit were aware that their problems had a lengthy history and could probably not be eliminated by quick fixes. Our task was to conduct a collective process in which the problems would be diagnosed and a holistic long-term solution would be sought.

We conducted six 2-hour Change Laboratory sessions in the fall of 2006. The participants of the sessions were selected to represent the whole range of practitioners working in the unit, from the head doctor of the unit to surgeons, anesthesiologists, nurses, a porter, and a secretary. We videotaped the sessions and transcribed the discussions. We also conducted follow-up sessions in 2007 and 2008 and continued following the development by means of statistical reports and interviews in 2009.

In the first session, conducted on September 28, 2006, there were 21 participants: 4 surgeons, 4 anesthesiologists (one who served as the operations manager of the whole unit), 3 surgical nurses, 4 anesthesia nurses (including the head nurse of the unit), 1 administrator, 1 secretary, 1 porter, and 3 members of the research group. In the 2-hour session, there were 402 conversational turns. In the following analysis, I will only use the transcript of the first session as data. I will scrutinize the data to characterize the starting point, the process, and the provisional outcome of the Change Laboratory intervention.