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1. Language in the world

How does language relate to the non-linguistic world? If an agent is able to commu-
nicate linguistically and is also able to directly perceive and/or act on the world, how do
perception, action, and language interact with and influence each other? Such questions are
surely amongst the most important in Cognitive Science and Artificial Intelligence (AI).
Language, after all, is a central aspect of the human mind—indeed it may be what distin-
guishes us from other species.

There is sometimes a tendency in the academic world to study language in isolation,
as a formal system with rules for well-constructed sentences; or to focus on how language
relates to formal notations such as symbolic logic. But language did not evolve as an iso-
lated system or as a way of communicating symbolic logic; it presumably evolved as a
mechanism for exchanging information about the world, ultimately providing the medium
for cultural transmission across generations. Motivated by these observations, the goal of
this special issue is to bring together research in AI that focuses on relating language to
the physical world. Language is of course also used to communicate about non-physical
referents, but the ubiquity of physical metaphor in language [21] suggests that grounding
in the physical world provides the foundations of semantics.

Systems that connect language to the world may be called situated to emphasize the
links to non-linguistic situational context. These systems also address the symbol ground-
ing problem [17] and may thus be called grounded. The topic of this special issue is
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situated, grounded systems. This includes systems which translate sensory signals into lan-
guage and language into physical actions, systems which learn how to use language in this
manner, and systems that use non-linguistic data when making linguistic decisions. Non-
linguistic interaction is generally anchored in sensors or effectors which are connected to
the physical world (or to simulations of the physical world). Although much current work
on sensor grounding emphasizes visual perception, other modalities ranging from thermal
to haptic are also being explored.

The numerous open challenges of language grounding provide an opportunity to bring
together many sub-fields of AI. While early AI researchers often investigated many aspects
of machine intelligence together, in recent years there has been a tendency for researchers
to focus on specific sub-fields of AI with well defined goals, such as computer vision, pars-
ing, information retrieval, machine learning, and planning. Language grounding provides
an impetus for AI researchers to integrate these sub-fields, so that they can attempt to build
machines that can converse about what they observe and do in human-like ways. Early
applications along these lines are already emerging, including:

• Automatic generation of textual reports grounded in real-time numerical data such
as weather forecasts, financial reports, and sports summaries (for example, [34] and
Reiter et al.’s paper in this special issue);

• Multimedia information retrieval and management (for example, [2] and Barnard and
Johnson’s paper in this special issue);

• Natural language interfaces to robots (many everyday objects and environments such
as cars and houses may be treated as robots in the sense that they have sensors, actua-
tors, bodies, and control systems) (for example, [19,43] and Roy’s paper in this special
issue);

• Natural language interfaces to virtual reality systems and games (for example, [16]
and Kelleher et al.’s paper in this special issue);

• Situated NLP for mobile devices (e.g., location-dependent web search queries);
• Intelligence analysis that combines language with contextual cues to interpret other-

wise ambiguous or noisy communication signals.

Broadly speaking, the long term implications of this work include the possibility of ma-
chines that are able to autonomously acquire and verify beliefs about the world, and to
communicate in natural language about their beliefs. Although at a relatively early stage,
we see the work in this issue as taking steps in this direction.

The growing interest in situated language processing systems closely parallels the rise
in study of embodied cognition and cognitive linguistics [3,6,9,14,20,46,47]. Behavioral
and neural studies are increasingly uncovering the rich interplay between language, action,
and perception. These findings bring into question strongly modular theories of mind that
posit stringent information encapsulation between modules. Insights emerging from the
construction of situated/grounded language processing system may lead to computational
models that are relevant to understanding human cognitive processes at a functional level
[36], and to help us understand how language evolved and is learned [30,44].
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2. Key technical challenges

A system that connects language to the world must bridge the symbolic realm of words
with the non-symbolic realm of sensory-motor interaction. This requirement raises difficult
and often subtle issues that do not arise in purely symbolic approaches to natural language
processing, nor in purely non-symbolic approaches to perception and action. We highlight
below some of the challenges in building such systems. For each of these broad areas,
the specific challenge of cross-modal processing (language, action, perception) is key to
building situated/grounded language processing systems.

We illustrate many of the these challenges with the problem of mapping visual input
data to linguistic color terms, which is one of the simplest and perhaps best understood
language-and-world tasks. A robot which is using visual data purely for internal decision
making (such as deciding which widgets coming off a production line need to be inspected)
might simply feed camera data into a neural network that is trained to distinguish ‘good’
from ‘bad’ widgets, without attempting to explicitly model color, or indeed even separate
color from other visual data. On the other hand, a machine translation system which is
translating English to French might simply treat color as a set of semantic primitives, with-
out attempting to model what these mean; all such a system needs to know is that RED is
a color primitive which is lexicalised as red in English and rouge in French. Such simple
approaches can work well in systems which only operate in one modality, but building
systems which link visual color data to linguistic color terms requires us to solve many
additional problems.

First of all, we need cross-modal representations (and associated reasoning algorithms)
that support both the linguistic and sensory-motor sub-systems. In practice, construction
of AI systems have led to a large variety of representations and reasoning algorithms that
are targeted towards specific niches; that is, representations which work well for language
processing, vision, expert systems, or some other AI niche. Unfortunately, in most cases
representations that work well for one niche do not work well for others. For example,
a neural network that identifies faulty widgets from visual data may have internal nodes
which in some way encode color information, but these nodes are unlikely to be useful for
choosing linguistic color terms. Another example is that many modern vision systems use
“bag of feature” models that lead to robust object detection, but ignore the spatial structure
(shape) of objects. Although such approaches lead to good performance on strictly visual
tasks, they provide no obvious basis for grounding important aspects of natural language
semantics. For example, modifiers in language can be used to specify part-whole mod-
ularity of objects (cup without a handle). A visual representation that does not preserve
spatial structure and part-whole relations will not be able to link to these kinds of natural
language phrases. Similarly, approaches to motor control and action representation that do
not preserve appropriate temporal structure will be unable to link to adverbial modifiers in
natural language. In general, the challenge is to design representations that work robustly
in sensory-motor contexts, yet provide the appropriate structural “hooks” for language.

Once we have established a representation that encodes the necessary non-linguistic
information, we need to associate words with perceptual and action categories. Draw-
ing from established methods in pattern classification (e.g. [28]), words can be treated
as labels for sensory-grounded categories. As is well known in the field of pattern clas-
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sification, feature selection is crucial to success. In particular, we should choose sensory
features which are similar to those encoded by natural language. For example, a popular
choice for visual color features is a cognitively motivated three-dimensional color encod-
ing [22,23]. Standard generative or discriminative classification techniques may then be
used to model categories within this three-dimensional space. In more complex domains,
the choice of perceptual features is often not as obvious. For example, the meaning of spa-
tial terms such as above have proven to depend on subtle interactions between the shapes
of objects involved and led to extensive research in appropriate choices of features [31].
Feature selection is only part of the challenge, however.

Linguistic word choice depends on context as well as the actual sensor data. For exam-
ple, the meaning of a modifier may depend on the category of objects it is modifying; thus
the visual association of red shifts widely as it is used in differing contexts such as red wine,
red hair, or red car. One approach to this problem might be to separately model possible
colors of each object class which are geometrically combined with context-independent
color prototypes [13]. Color words can also convey non-linguistic information; for exam-
ple, green banana suggests a banana that is not ripe as well as a banana which is visually
green. Such context effects are ubiquitous in natural language. To take just one non-color
example, consider adding voice commands to a mobile robotic vacuum cleaner. The differ-
ence in meaning of “behind” in “clean behind the couch” and “hide behind the couch”
depends on complex interactions between the physical environment and the functional
meaning of “cleaning” and “hiding”. These and numerous other kinds of context effects
stand as open challenges for future research.

Another issue is deciding how specific and detailed the linguistic description should be;
for example, is it better to use a broad color term such as red or a more specific one such as
crimson? Most objects are not uniformly one color—does this need to be mentioned (for
example, red car vs. red car with silver trim). This often depends on domain knowledge
(we would not usually say red car with black wheels, as wheels by default are black). In
most cases linguistic descriptions are summaries of sensor data (since we cannot commu-
nicate megabytes of sensor data in a few words), so we must decide what to include in the
summary. For example, an agent seeing a cup on a table will have a large amount of infor-
mation about the cup’s color, size, orientation, precise position, and so forth, which is not
communicated in the linguistic summary there is a cup on the table. Specificity and detail
decisions may depend on the task (context again!), and algorithms have been proposed for
these decisions in specific constrained tasks such as reference generation [10]. However,
we do not know of methods to make such decisions in general.

To ground verb meanings, systems must represent temporal structure of actions. Beyond
simply labeling sequences of movement, verbs often encode causal structure (who did what
to whom). Thus, ideally, representations of action would on one hand link to perception
and control of action in the physical environment, and on the other provide structural hooks
for the argument structure of verbs. The intertwined nature of verbs and actions leads to
larger scale challenges in designing planning algorithms for situated language processors.
A scene description system, for example, needs to plan word choice such that possible lis-
tener ambiguities arising from the current physical context can be anticipated and avoided.
More challenging yet, is the problem of planning with a mix of communicative and motor
actions. For example, consider a cooperative robot that helps its human partner in physical
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tasks (e.g., lifting large objects) and that uses language to coordinate joint action. The ro-
bot must plan its words and its motor actions in a coordinated fashion. Methods from robot
planning and discourse planning must be integrated to achieve such behaviors.

The above discussion focuses on representations and algorithms; but how do we actually
get the data to create specific language-to-world rules? For example, how do we actually
decide which color values correspond to red hair? In general researchers have to date as-
sumed that most of this data is learned from examples and feedback. Hence we must decide
how this learning should be done for each of the challenges discussed above. For learning
perceptual associations of words, established methods of parameter estimation and feature
selection may be used. Learning how to plan across modalities or integrate ambiguous
sources of knowledge might be cast as a reinforcement problem. In general, many learn-
ing problems will involve not only parameter estimation but also structure acquisition. The
complexity of situated language systems, such as those described in this volume, suggest
that any “blank slate” learning approach is likely not to scale due to the enormous search
space size. Thus, we anticipate structured learning approaches, i.e., learning methods in
which manually designed biases constrain learnability, will play an critical role.

If language-to-world rules are learnt rather than explicitly communicated, it is likely that
the rules learnt by different agents will be different to some degree. Indeed, it is clear that
different people associate different meanings with words [33]. For example different people
associate different color values with the word red, even in identical contexts. Humans who
are talking to each other align their language to each other [7,26], and computer language-
to-world systems may wish to likewise align with their human conversational partner.

The fact that different agents use different language-to-world rules suggests that it is
possible that the overall set of rules used by a community of agents may change over time,
especially if old agents are regularly replaced by new agents, who again must learn and
align language rules. Many researchers are interested in using simulations of such agents
to study language evolution, and gain insights as to how human language evolved.

Last but not least, an important methodological issue is how language-and-world sys-
tems should be evaluated. For example, if we have built a system that generates color words
from visual data, how can we determine if this system does a good job or not? The papers
in this special issue use a very diverse range of evaluation techniques, including perfor-
mance on a held-out test set, psychological experiments with human subjects, soundness
and completeness measures, user questionnaires, and simulations. This diversity may re-
flect the fact that researchers in this area come from many different subfields of AI, which
have their own expectations and conventions about evaluation. While in some ways this
diversity is exciting, it can make it more difficult for readers to understand and compare
evaluations. Indeed, we note as editors that the criticisms of evaluation were the most com-
mon complaints made by referees about the content of papers submitted to this special
issue. Hence, agreeing on appropriate evaluation techniques is an important challenge for
the language-and-world community as a whole.

The challenges we have laid out are broad and are meant to provide an overall guide
to the issues at stake. We now highlight selected previous work to provide some historical
context.
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3. Examples of related prior work

A comprehensive survey of work in situated/grounded language processing is beyond
the scope of this introduction, so instead we highlight a few threads of research that are
representative. Readers interested in more thorough surveys may refer to collections of
related work [4,8,27] and reviews of research on word grounding, learning and evolution
of language [30,36,44].

Winograd’s seminal SHRDLU system demonstrated the importance of integrating
world models with language planning and understanding [48]. The system could engage in
natural language dialog to control the actions of a simulated robot arm in a blocks world,
ask clarifying questions, and generate explanations of its actions. Although SHRDLU did
not deal with problems of sensory-motor categorization, cross-modal ambiguity, or learn-
ing, it was nonetheless a milestone in the history of AI and a clear example of situated
language processing. In the same period, the first robots that connected machine perception
to symbolic descriptions were being developed by Nilsson [25]. Although natural language
was not the focus of this work, many of the issues related to sensory-motor categorization
and planning mentioned above were central to this early work.

More recently, Siskind has explored the links between language and perception through
the construction of a series of visually-grounded language systems [40–42]. Building on
insights from cognitive linguistics [45], he has developed a temporal representation that
encodes the causal relations between objects inferred from visual observation. He has
demonstrated implementations that translate video input into structured representations.
Due to the emphasis on causal relationships, his approach provides a natural basis for link-
ing argument structure of verbs to objects that fulfill semantic roles (e.g. agent, patient)
in the physical world. Learning from positive examples has been demonstrated using this
representation [12].

The Visual Translator (VITRA) is one of the most ambitious end-to-end visually
grounded scene description systems built to date [18]. VITRA was able to generate natural
language descriptions of traffic scenes and segments of soccer matches. Visually-grounded
models of spatial relations and actions operated on video input, which were then translated
into verbal descriptions used a set of domain-dependent generation rules. The generation
system included a listener ambiguity model that was used to eliminate potential listener
confusions by generating descriptions that were unlikely to match distractor referents in
visual scenes.

The “L0 Project” was created with the goal of developing computational models of sit-
uated language acquisition motivated by the question, “How could we learn to describe
what we see” [11]. This effort led to a series of projects that addressed different aspects
of physically situated language acquisition and use [1,5,24,29]. Bailey and Narayanan de-
veloped a structured representation of action underlying verbs that was used to control a
simulated robot arm [1] and as a basis for understanding physically grounding metaphors
[24]. Regier explored geometric visual features that underlie spatial relations and that seem
to be at play across languages. This led to his later work with colleagues on linguistically
motivated vector-based representations of spatial relations [31], and insights into the role
of attention in spatial relations [32].
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Roy and his colleagues have developed a series of systems that relate words, descriptive
phrases, and commands to physical environments [15,35,37–39]. The cross-channel early
lexical learning (CELL) model was used to learn words by processing acoustic recordings
of infant-directed speech paired with video images of objects [39]. Later work focused on
visually-guided grammar acquisition for scene description [35], modeling spatial language
in scene descriptions [15], and visual context sensitive speech understanding [38]. Roy,
Hsiao, and Mavridis developed an interactive manipulator robot named Ripley that is able
to translate spoken commands such as hand me the blue thing on your right into physical
actions. The robot maintains a mental model of its table top environment, providing a cross-
modal representation for binding verbal commands, visual perception, and motor control.
Roy’s paper in this volume synthesizes many of the theoretical insights that emerged from
this body of work.

4. Papers in this volume

4.1. Barnard and Johnson: Word sense disambiguation with pictures

Barnard and Johnson show that visual information can help in the classic Natural Lan-
guage Processing (NLP) problem of word sense disambiguation (WSD). Many words of
course have multiple senses (meanings), and WSD systems attempt to determine which
sense of a word is meant. For example, whether bank refers to a financial institution or
to the edge of a river. Existing algorithms for this task use purely linguistic information.
Barnard and Johnson show that when the text is accompanied by an image which has visual
correlates with previous uses of the word (that is, the image might be a city street scene or
a natural scene with water), visual analysis of this image can increase the accuracy of the
WSD system. They use images from a standard corpus, not images hand-crafted to assist in
the WSD task. Their algorithm is based on a technique for predicting likely words for im-
ages, which is inspired by statistical machine translation techniques; in other words, they
apply ideas developed for translating French to English to the task of ‘translating’ images
to English.

From the perspective of Section 2 challenges, a primary contribution of this paper (and
of previous work by Barnard and collaborators [2]) is in the area of cross-modal representa-
tions. The authors show how to extend a technique developed for NLP (statistical machine
translation) so that it also works with visual data; and that it is possible to develop inte-
grated algorithms and representations, for an important real-world task, which work well
with both linguistic and non-linguistic data. From an applications perspective, the authors
show that is possible to use visual information to assist in an NLP task (WSD).

4.2. Dominey and Boucher: Learning to talk about events from narrated video in a
construction grammar framework

Dominey and Boucher describe a system that learns how language is used to describe
events in a simple microworld, by observing how humans talk about events in this world.
They focus on learning sentence structures, and in particular propose that this be done
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using simple template-like rules for sentences, instead of complex compositional gram-
mars. They experimentally show that their system does a reasonably good job of learning
language even when the observational data comes from naive human subjects who know
nothing about the system.

From the perspective of Section 2 challenges, this paper is a contribution to learning,
and also perhaps to evaluation (since previous systems in this area have tended to use obser-
vational data provided by the developers themselves, who knew how the system worked).
The paper also shows how psychological insights about how children learn language can
be incorporated into a computer language-learning system.

4.3. Kelleher et al.: Dynamically structuring, updating and interrelating representations
of visual and linguistic discourse context

Kelleher et al. show that visual information can assist in the NLP task of generating
and interpreting referring expressions (noun phrases that identify objects) such as the blue
house or the tall tree. In principle the choice of referring expression is strongly affected
by context and salience, including both discourse context (what has been mentioned in
previous utterances) and perceptual context (what speaker and hearer see or otherwise
perceive). Kelleher et al show how these two kinds of context (and two types of salience)
can be integrated and jointly used for reference interpretation and generation in a virtual
reality system.

From the perspective of Section 2 challenges, perhaps the major contributions of this
paper are in the areas of cross-modal representations and on the use of non-linguistic data in
adjudicating the specificity of linguistic descriptions. The authors show how linguistic and
visual data about context and salience can be integrated and used for NLP tasks; and how
such a cross-modal integration leads to a better understanding of the general phenomena
of salience. From an applications perspective, they show that language-and-world research
can play an important role in the new area of virtual reality.

4.4. Needham et al.: Protocols from perceptual observations

Needham et al. show how an autonomous agent can learn how to play a simple game
which includes both visual and linguistic aspects. Audio and video recordings are made of
two humans playing a game, and these are analyzed to learn the rules of the game; these
rules are then given to a computer agent. Learning is done in two stages. First, the audio
and video systems learn classifiers which identify distinct visual objects and distinct audio
words. These classifiers are used to convert recorded games into a symbolic representa-
tion; this is essentially a temporally-ordered sequence of states, combined with a symbolic
description of the state of the game at each state. Inductive logic programming is then used
to learn the rules (protocols) of the game from this information.

From the perspective of Section 2 challenges, this paper is clearly a contribution to
learning. In particular, it shows how symbolic and non-symbolic learning can be combined,
so that an agent can learn both linguistic and visual aspects of a real-world activity. From
a more applied perspective, the authors shows that it is possible for agents to learn how to
participate in real-world multi-modal interactions with humans.
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4.5. Reiter et al.: Choosing words in computer-generated weather forecasts

Reiter et al. focus on the problem of choosing words to communicate numerical weather
prediction data; this indeed is the only paper in the special issue which does not attempt
to connect language to vision. They present an extensive empirical analysis of how hu-
mans (weather forecasters) perform this task, focusing on the fact that there are substantial
differences between the forecasters in which words they prefer to use, and indeed in the
meanings they associated with words; for example some forecasters used late morning
to mean 9AM, while others used this phrase to mean noon. Reiter et al. then describe
their SumTime-Mousam weather-forecast generation system, which in fact is operationally
used by a forecasting company to generate several kinds of forecasts. At a lexical level,
SumTime-Mousam is programmed to avoid words whose meaning varied substantially
across forecasters, and words only used by a small minority of forecasters. An evaluation
of wind descriptions (part of the weather forecast) showed that human forecast readers
preferred SumTime-Mousam texts over texts written by human forecasters; qualitative
comments from the users suggest that this is partially because SumTime-Mousam texts
contain fewer idiosyncratic or ambiguous words.

From the perspective of the challenges presented in Section 2, this paper’s most im-
portant contribution is perhaps in the area of alignment. The authors show that there is
considerable difference in the language used by different people (that is, in “idiolects”),
that a computer text-generation system can be programmed to avoid many idiolect-specific
misunderstandings, and that this seems to enhance the quality of the generated texts. They
also show that it is possible to build a complete data-to-language system which is good
enough to be used operationally, and which produces texts that are as good as (perhaps
even better than) human-written texts, at least by some metrics.

4.6. Roy: Semiotic schemas: A framework for grounding language in action and
perception

Roy presents a theoretical framework for grounding the meaning of verbs, adjectives,
and nouns referring to physical referents using a unified representational scheme that “pro-
vides a computational path from sensing and motor action to words and speech acts”.
He defines grounding as a cycle that relies on both “bottom-up” sensor-grounded per-
ception and “top-down” agent-driven action on the physical environment. Rather than
start with an ontological distinction between objects and events, Roy takes a construc-
tivist approach by suggesting a common set of representational primitives that are used
to construct complex events, objects, and object properties. As a result, the conceptual
grounding of verbs, nouns, and adjectives are expressed as networks of sensory-motor
primitives called semiotic schemas. The internal structure of schemas provides a basis for
relating and combining concepts underlying words—thus the framework provides a sub-
symbolic level of explanation of conceptual structures that ground symbolic (linguistic)
activity. The framework arose from—and provides a guide for future work in—the con-
struction of robotic and virtual systems that connect situated language to machine action
and perception.
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In terms of Section 2 challenges, Roy’s framework is a contribution to cross-modal
representation and processing that is shaped by the relationship between natural language
and embodiment.

4.7. Vogt: The emergence of compositional structures in perceptually grounded language
games

Vogt is somewhat different from the other papers in this special issue because he is in-
terested in understanding how language evolved—not in building computer systems that
interact with human users or analyze human-authored documents. He explores language
evolution by creating a simulated world where agents interact linguistically in a shared
environment, in particular by playing “language games” where an “adult” agent which al-
ready has a linguistic model interacts with a “child” agent which is learning the model.
Vogt is interested in what happens to the language system over the course of many gen-
erations, and in particular if grammatical structures (such as compositionality) evolve and
remain stable over the course of time in the language system, and how the evolution of
compositional structures is related to (the modeling of) semantic development.

From the perspective of Section 2 challenges, this paper is a contribution to language
evolution, and also to learning. In particular, Vogt shows how complex compositional rules
can evolve in an agent population, as well as basic sense-data-to-word associations.

5. Conclusions

Understanding how language relates to the world is one of the grand challenges of
cognitive science, and building automated systems that connect the symbolic world of lan-
guage to the non-symbolic world of sensory input and effector control is one of the great
challenges of AI. As the papers in this special issue show, researchers are beginning to
develop techniques to address the problems described in Section 2, and also beginning to
build systems that link language and the world in sophisticated ways, in quite a variety of
application contexts. These systems often operate in limited domains and/or assume input
data that is relatively noise-free, but nonetheless they demonstrate that even our current
limited understanding of the scientific issues involved enables us to build systems that do
a good job at real tasks such as generating weather forecasts and word sense disambigua-
tion.

Research in this area is especially exciting because it requires integrating various sub-
fields of AI, including vision, robotics, pattern analysis, knowledge representation, learn-
ing, and natural language processing. Current AI research often feels like a collection
of subfields which rarely communicate with each other. While such specialization has in
many ways helped the subfields progress, we believe that the subfields could benefit from
interacting more, and also that this would benefit the AI and cognitive science research
agenda as a whole. The papers in this volume show that tangible progress in the theory
and application of situated, grounded language processing systems is well underway. We
hope this special issue encourages more people to get involved in this growing research
area.
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