THE FUNCTIONAL ORGANIZATION OF THE BRAIN
THE NEURONAL ORGANIZATION OF THE BRAIN

The functional organization of the brain is complex and involves the integration of various regions. The brain's regions work together to process and store information. The prefrontal cortex is involved in decision-making and planning, while the parietal lobe is involved in sensory perception. The motor cortex is responsible for the coordination of movements, and the temporal lobes are involved in language functions and memory. Understanding the brain's organization is crucial for understanding its functions and how they are disturbed in diseases such as Alzheimer's and Parkinson's. The integration of neurons across different brain regions is essential for processing complex information and maintaining cognitive processes.
The third block of the brain, comprising the formation of intentions and programs of behavior, has been studied by S. I. Franz, Karl K. Hebb, and Jerzy Konorski. They have shown that the formation of intentions and programs of behavior involves the functions of the frontal lobes. The frontal lobes are essential for the formation of intentions and programs of behavior.

The frontal lobes perform no sensory functions; instead, they are involved in motor functions, such as planning and execution of movements. The frontal lobes are involved in the formation of intentions and programs of behavior, and they are also involved in the regulation of voluntary movements.

VOLUNTARY MOVEMENT is controlled by a system of cortical and subcortical zones, which are involved in the initiation and control of movements. The motor cortex initiates movements, but the subcortical zones, such as the basal ganglia and the thalamus, are involved in the control of these movements. The thalamus receives information from the sensory systems and sends it to the motor cortex, which then initiates the movement.
The primate localization of a voluntary movement is the result of a consequence of the neuronal activity in the sensory and motor cortex. To understand the steps of the movement, let's consider the components of a voluntary movement and explore the function of the primate motor cortex.

The primate motor cortex is responsible for generating and coordinating voluntary movements. It receives input from the sensory cortex, which processes information from the environment, and sends output to the motor nuclei of the brainstem and spinal cord, which control muscle activity.

An important feature of the primate motor cortex is the organization of movement. The motor cortex is divided into areas that represent different parts of the body, with more fine movements represented in more anterior areas and coarse movements in more posterior areas.

Confusion over different parts of the brain and the body arises from the fact that the brain does not have a direct representation of the body. The brain relies on sensory input to create a model of the body's position, which it uses to plan and execute movements.

Spatial disorientation is a condition in which a patient with a brain injury or neurological disorder cannot accurately perceive their spatial orientation in the environment. This can lead to difficulties in navigating and performing daily activities.

The spatial disorientation is often caused by damage to the parietal lobes of the brain, which are responsible for spatial processing. Treatment options include physical therapy, occupational therapy, and cognitive training to improve spatial awareness and orientation.
INFLUENCE OF PHENOMENON ON THE ORGANIZATION OF DRAWINGS. From the left periomatic region. On each of the days represented, by an artist, after surgery for removal of a meningioma, which is to be shown here. Performance improved slowly, and the drawings became more detailed and accurate.

DRAWINGS OF A MAN were attempted by the same patient during the postoperative period. At first, he drew a head and body, represented by the circles at upper center in the drawing at left. Then he drew a second man, whose head is to the right of the first man's body. Finally, he made a series of stereotyped pen strokes. The ones in the middle of the page were made on non-moving paper. On successive days, the movement of the arm improved. Difficulty in stopping a movement often appears in premonitory periods.

WRITING OF NUMBERS was attempted by the same patient on the second, third, and fourth days after the operation. As in the other cases, the patient at first showed a tendency to repeat part of the task, but the repetition diminished on the following days.
movement. Every movement has to be
subconsciously organized, and when once
organized, it has to be repeated so that it
becomes automatic and can be performed
without thinking. It is this automaticity that
makes us able to perform complex tasks
like writing, typing, or playing the piano
without conscious effort.

Speech and Writing

Let us now analyze the process of writing
psychologically. We have already pointed out
that the act of writing involves two main
processes: the ability to speak and the ability
to write. Speaking and writing are not
independent processes, but are closely
interrelated. The ability to speak is
necessary for the ability to write, and the
ability to write is necessary for the ability
to speak.

In the case of a child who is learning to
write, the process of learning to write is
gradually transformed into a process of
writing. The child learns to write by
imitating the adult who is writing. The
child begins by copying the adult's
writing, and then begins to make changes
in the adult's writing. The child's writing
becomes more and more like the adult's
writing as the child learns to write.

Lesions of the frontal lobes

Lesions of the frontal lobes in adults
who are unable to write, or who write
incoherently, are usually caused by
damage to the motor cortex. The motor
cortex is located in the frontal lobes, and
is responsible for the control of
movements of the body. Lesions of the
motor cortex can cause paralysis of
movements of the body, and can also
cause difficulties in writing.

In children, lesions of the frontal lobes
that affect writing are usually caused by
damage to the prefrontal cortex. The
prefrontal cortex is located in the
frontal lobes, and is responsible for the
control of higher-order functions such as
planning, organizing, and decision-
making. Lesions of the prefrontal cortex
in children can cause difficulties in
planning and organizing writing, and can
also cause difficulties in completing
writing tasks.
Disruption of hearing in patients with bullet wounds in the left hemisphere of the cerebral cortex is illustrated. The diagram shows the percent of patients who had difficulty recognizing sounds. The upper numbered bars indicate the percent of patients who had difficulty recognizing sounds due to disruption of the cerebral cortex. The lower numbered bars show the percent of patients who had difficulty recognizing sounds due to disruption of the left hemisphere of the cerebral cortex.
writing aberration was shown by a patient with a tumor in the deep part of the brain's left hemisphere. he was asked to write the Russian words for window and in Russian, which are printed in Russian. he wrote the Russian words for window and in English translation below each example. arrows show repetitions or fragments. the term "writing aberration" has been put on a new path in the investigation of how the brain functions, and we can suppose that it is likely to lead the way to new studies on psychosomatic changes in the design of psychological research in the future.

the effects of writing and reading were shown by a patient with a lesion in the left hand area. Again, the disturbed letters or words appear on the top line. the written response by the patient's own word appears on the bottom line. the bottom line shows the written response by the patient's own word. none of the words on the written response were meaningful.

It is not clear whether the term "writing aberration" is applicable to this patient or not. The patient's own words could be the result of a different process, such as a different language or a different motor function. The use of arrows to show repetitions or fragments indicates that the patient's writing is not consistent with the normal process of writing.