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Introduction 
The contributions to this issue of the Ne..,,Jetter seek 

to fonnulate an adequate approach to understanding of 
one of the most complex and richest domains of human 
activity: mathematics. The main articles were presented 
at a ~ium organized by our fellow editor, Terezinha 
Nimes Carraher, at the 1987 meetings of the International 
Society for the Study of Behavioral Development in 
Tokyo. A commentary on the symposium contributions is 
provided by Peter Bryant and the issue concludes with a 
book review by Derek Edwards. 

Readen of the Newsletter will recognize many famil
iar themes in these articles: 

(a) approaches to understanding the development of 
mathematics that take their inspiration and often their 
empirical starting point from the structure of institutional
ized activity-whether in a LOGO lesson, an abacus class, 
a standard math lesson, or the selling of candy; 

(b) a focus on mediational means, whether computer, 
abacus, paper and pencil, or money; 

(c) a concern with social-organizational factors that 
constrain activity in context, differentiating (for example) 
eveiyday and school-based mathematics. 

In the discussion that Peter Bryant was kind enough 
to write for this issue, he taises a problem that has long 
been of concern: how are we to account for children's 
successes and failures in bringing mathematical knowl
edge they display in one context to bear on problems 
encountered in another? Bryant suggests that a key to 
transfer is analogy, a process by which children come to 
see that two problems in different contexts in fact share the 
same "underlying cognitive structure. 

Bryant is correct when he comments that an appeal to 
analogy represents a departure from what he takes to be 
existing "causal models" of development: Piaget's and 
Vygotsl<y's. Socio-historical theorists, at least, have long 
been suspicious of the appeal to analogy as the basis of 
transf« since such an appeal names the problem instead of 
solving it; the issue of how children are able to see two 
problems as "isomorphs" of each other is just the question 
of how transfer is possible. Interested readers are invited 
to refer to an extended discussion of this issue in LCHC 
(1983). There we point to a variety of ways in which 
socially organized connections between contexts play a 
role in highlighting cultural assumptions about orders of 
relevance between problems as "extra cortical" constraints 
on the discoveiy and use of analogy. 

A complementary source of cons1raints on the dis
coveiy of relevant analogies is suggested by Derek Ed
wards in his review of Valerie Walkerdine's 1be Mastery 

of Reason. Edwards suggests that one fruitful way to 
understand how analogies are formulated and deployed is 
to focus on modes of discourse which coQtribute to the 
constitution of activity in context Indeed, many of the 
concrete results reported in articles given at the Tokyo 
symposium rely on analyses, both implicit and explicit, of 
children's discursive accomplishments as they deploy 
mathematical procedures in a variety of contexts. This 
approach to discourse appears fully congruent with recent 
efforts within the socio-historical tradition to elaborate the 
semiotic dimension of activity-centered approaches to 
mind (e.g., Wertsch, 1985). An important challenge for 
the future will be to seek powerful syntheses of the views 
of those who emphasiz.e analogy as (internal) mental 
model, those who focus on the structure of activity, and 
those who focus on mediational means, including dis
course structures, to account for how initially quite con
text-specific developmental consequences come to have 
the degree of generality (however limited and uneven) that 
one observes as children grow older. 

D.B., M.C., D. M. 
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Learning Computer Languages 
and Concepts 

Terezinha Nunes Carraher 
Luciano de Lemos Meira 
Universiclade Federal de Pernambuco 
Recife, Brazil 

Computers have been introduced in education with 
several functions: as electronic books and blackboards, 
not representing any fundamental change; as a means of 
altering the social interactions in the classroom, with 
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teacher and students solving problems together (Suther
land & Hoyles, 1986); as a device that allows students to 
use concepts which would perl,aps be learned as goals in 
themselves but can, through computer work, be learned as 
tools (Carraher, Santos & Borba, 1986); as a significant 
way of teaching about logic and meta-cognition (Thomp
son, 1986); and as a goal in and of themselves, when learn
ing to program (that is, learning computer languages) con
stitutes the purpose of the computer introduction in the 
classroom. This paper focuses on the introduction of 
computers in the classroom as a goal. Students' behavior 
when using a programming language-LOGO-will be 
analyzed in the same way that we analyze children's 
efforts in learning a natural language. It is generally 
accepted that when children learn a natural language, the 
acquisition process is not totally determined from the 
outside. There are important characteristics of the learner 
which determine the course of language development. 
When a child uses a word, for example, this use does not 
imply that the adult meaning was apprehended by the 
child. Oilldren assign their own meanings to words when 
they first use them, and there may be a lengthy process of 
semantic development before the child can be said to share 
the adult meaning of many words. Papert (1980) already 
pointed out the similarity between natural language learn
ing and learning LOGO; besides calling LOGO "TUR.TIE 
TALK,• he asserts: "Since learning to control the Turtle is 
like learning to speak a language it mobilizes the child's 
expertise and pleasure in speaking" (p. 58). 

This study describes the ways in which adolescents 
tried to attach meanings to the RIGHT and LEFT com
mands learning LOGO. It treats LOGO as a language in 
which meanings have to be constructed by the learners as 
they use the language. Learning LOGO is particularly 
interesting as analysis of the development of semantics for 
-several reasons. First, there are no factors limiting pro
duction, in contrast to what happens in natural language 
acquisition where the child's ability to produce an utter
ance may prevent the child from saying a known word. 
Using the tum commands (RIGHT or IEFf plus some 
number) is not restricted in this study by the subject's 
inability to spell the tum commands or to \\Tile numbers 
using place value. Thus production data, which may be 
considered ambiguous in studies of natural language 
acquisition, can be assumed to represent reliable informa
tion on the semantic structure of the learners in LOGO use. 

Second, Turtle Talk represents commands to be fol
lowed by the turtle. Contrary to what happens in natural 
language, where the listener may tacitly correct an utter
ance and t,y and respond to the meaning, not giving the 

teamer explicit feedback on errors, the turtle is a literal 
interpreter: any command will be followed in the literal 
sense. 

Third, the tum commands (RIGHT or LEFT) in 
LOGO are connected to the children's own situation, to 
the turtle behavior on the screen, and to the resulting 
drawing in such a complex way that learning LOGO is not 
like learning new =rds for old meanings; it is not like 
learning to say •gato• for cat or "cachorro" for dog. 
Leaming LOGO requires that students organize meanings 
in particular ways, which may differ from those previ
ously used in their daily =rid away from computers. 

Turtle Talk, Turtle Behavior and Turtle Drawing 

Before we describe the study, let us tske a glance at 
LOGO and raise some questions about the difficulties in 
the acquisition of the tum commands with their semantic 
structures and relate Turtle Geomet,y to Orlldren's Ge
omet,y as described by Piaget and his collaborators. 

Tum commands in Turtle Talk are quite easy for any 
adult to produce. A tum command consists of a word, 
RIGHT or LEFT, which indicates which way the Turtle 
should tum, plus a number, which tells the Turtle how far 
to tum. RIGHT and IEFf, if already understood by the 
learners only become problematic when one looks at 
Turtle Behavior and Turtle Drawing as meanings of the 
commands. The Turtle in LOGO is a small triangle on a· 
computer screen. A student working with LOGO is situ
ated on a horizontal plane; the Turtle is situated on a 
vertical plane. This transposition in and of itself may be 
complex but other difficulties can be pointed out. A 
student \\Tiling commands has hisllter right or left quite 
fixed, contrary to Turtle Behavior. The Turtle's right and 
left tums change in direction on the screen depending 
upon whether the Turtle is facing up or down, left or right 
at the moment If the Turtle is pointing straight up and 
RIGHT command is issued, the Turtle turns towards the 
student's right. If the Turtle is oriented head down, the 
RIGHT command produces a left tum from the student's 
viewpoint. If the Turtle is oriented horizontally towards 
the student's right, the Turtle moves it head down after a 
RIGHT command. Finally, for a Turtle oriented horizon
tally towards the student's left the command RIGHT 
results in a movement that will straighten it up. Thus for 
the same command the Turtle behavior varies as a func
tion of the Turtle's present orientation-a characteristic of 
LOGO which Paper! treats as "intrinsic geomet,y" be
cause of the reference to the Turtle's momentary position 
in determining the next movement. 
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The tum commands are always followed by a number 
"to say how much the Turtle should tum. An adult will 
quickly recognize these numben, as the measure of the 
turning angle in degrees" (Paper!, I 980, p. 56). What 
meaning do children attribute to this number? When the 
student tells the Turtle to FORWARD 100, RIGHT 45, 
FORWARD 100, the Turtle draws on the screen an 
angle-in fact, two angles, an angle which is readily 
perceptible due to its closeness and measures 135 degrees, 
and another one, which we perceive by inverting the initial 
figure-growtd relationship, and measu\,,s 225 degrees. 
Turtle Behavior and Turtle Drawing are thus related in 
ways which are not so simple. Putting the example in 
mathematical terms, Turde Behavior consists in turning 
an angle x "'1icb represents the supplem,nt (that is 180-
x) of the angle seen after the Turde bas conpleted its 
Drawing. if an adult quickly recognizes the number in 
RIGHT 45 as the measure of the tuming angle in degrees, 
what meanings do students attribute to this number when 
they are attempting to draw something on a screen? 

Turtle Geometry and Oiildren's Geometry 

Piaget, Inhelder and Szeminska (1960) described the 
development of the wtde111tanding of angles based on a 
task in which children were asked to draw two supplemen
tary angles which they could study and measure as long as 
they wanted to but which they could not look at while 
producing their own drawing. 

C 

A D B 

F,pre I. Angles to be reproduced in the Piagetian Task 

They found that children's behavior could be inter
preted as reflecting different strategies, which they organ
ized into stages. In the first stage (4-5 yean,), children 
attempt to copy the drawing by visual estimates; no 
attempts at measuring are observed. In the second stage 
(6-7 years), children attempt to measure the lines in the 
figure to be reproduced (AB and DC) but their measure
ments are one-dimensional; no attempts at measuring the 
angles are observed and the slope of the line (DC) between 

the supplementary angles is not taken into accowtt In the 
third stage (7-8 years), children try to copy the slope by 
measuring the origin of DC and trying to maintain the 
slope of their ruler fixed as they move from the measured 
figure to their own drawing. In the third stage (8-9 years), 
children attempt to measure angular separation by adjust
ing the drawing in such a way as to make the distances AC 
and CB equal to the figure which is being copfed. Al
though the children at this stage obtain the correct figure 
and use a two-dimensional operation in drawing, this 
measurement is not yet governed by one-to-one corre
spondence with two axes describing a plane. In stage four 
(about 10 years), children use a right-angle to measure 
angular separation, determining point C through the 
measurement of a perpendicular which connects C to the 
line AB in the figure. "In measuring an angle by dropping 
a perpendicular to the shorter of its arms, these children 
effectively integrate one-many correspondences within 
the frame\Wl'k of a rectangular coordinate system" (Piaget, 
Inhelder, & Szeminska, 1960, p. 184). Piaget, Inhelder, 
and Szeminska thus claim that, in their attempts to deal 
with angular measurement, children recreate Cartesian 
geometry by defining point C as a location in a plane 
determined by two perpendicular axes in a one-to-many 
system of correspondences. 

We can compare Children's Geometry to the Turtle 
Geometry because Paper! (1980) has made explicit what 
meanings he expects the tum commands to have from a 
broader pen,pective; that is, he has described what we 
could call "the intended semantic structure" of IDGO, 
which he calls the Turtle Geometry. The tum commands, 
he proposes, embody a geometry that diffen, from F.uclid
ean and Cartesian geometry. When a child tells the Turtle 
to move a little and tum a little in order to draw a cm:le, the 
commands are said to refer "only to the difference be
tween where the Turtle is now and where it shall momen
tarily be ... There is no reference in this to any distant part 
of space outside of the path itself. The turtle sees the circle 
as it goes along, from within, as it were, and is blind to 
anything far away from it... For Euclid, the defining 
characteristic of a circle is the constant distance between 
points on the cm:le and a point, the center, that is not itself 
part of the circle. In Descartes' geometry, in this respect 
more like Euclid's than that of the Turtle, points are 
situated by their distance from something outside them, 
that is to say the perpendicular coordinate axes" (p. 67). 

This very detailed description of the intended seman
tic structure of lDGO creates the opportunity for the 
analysis of an extremely interesting question in the acqui-
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acquire the semantic structure as determined from the 
outside-that is, differential geometry, as intended by 
Papert--0r is there a process of acquisition of meanings 
detennined from within, as a consequence of the leamers' 
own efforts to make sense of the language? With respect 
to the development of children's concepts of geometry, 
Piaget, Inhelder & Szeminska (1960) have proposed that 
there is a certsin organization in development, which can 
be treated theoretically as the "organization from within." 
However, their studies pertain to a particular cultural 
milieu in which children are exposed to particular mathe
matical instruction and not exposed to LOGO. By looking 
at youngsters learning LOGO, it is possible to analyze 
whether a new -cultural creation such as a computer Jan. 
guage can result in changes in this developmental path. 

The Study 

This study describes students' stmtegies in designing 
programs using LOGO when they attempt to draw a target 
figure. It takes the viewpoint that they must understand the 
use of tum commands in order to draw particular target 
figures correctly from the outset, not in a trial-and-error 

• fashion. LOGO enthusiasts seem to assume that children 
in fact leam LOGO by understanding intrinsic geometry 
(Paper!, 1980; Kynigos, 1986). In this study, we ask: is it 
really so? The study describes different levels of develop
ment of the semantic structure underlying the production 
of turning commands by testing students who had differ. 
ent amount of experience with the language and different 
levels of previous instruction in school-geometry. We 
tested the students' competence by asking them to pro
duce programs which would lead the turtle to draw par
ticular figures-a production task. Other aspects of pro
granuning were also tested and students were given a 
comprehension task too. However, this report pertains to 
the production task only; details about the comprehension 
task and other aspects of programming can be found in 
Meira (1987). 

Method 

Subjects. Subjects were 32 Brazilian youngsters 
from a public school attached to the Universidade Federal 
de Pernambuco in Recife, Brazil, randomly selected from 
two groups of volunteers interested in learning LOGO. 
Half of the youngsters were 7th graders (approximate age 
13 years) and had bad very little trsining in geometry; half 
were attending their second year of high school, which is 
three grsde leyels up from the 7th grade (approximate age 
IS years) and had leamed some trigonometry. None of the 
subjects had bad any previous experience with computers 

and none had their own computer at home. Although no 
prior testing of their competence in the Piagetian task of 
angle reproduction was carried out, it can be assumed 
from their age levels that most, if not all, would be able to 
carry out angle measurements by using a system of axes. 

Design. In order to introduce more variance into the 
study so as to observe greater variation i.n strategies in 
programming, the students in each level of schooling were 
assigned to two levels of practice (15 or 30 hours) in 
LOGO prior to testing. 

Procedure. During training, students worked in 
pairs with a non-directive instructor who allowed students 
to create their own projects and work freely at the editor 
during training hours. Between training sessions, students 
were encouraged to prepare projects that they would try to 
implement during sessions. Three different instructors 
worked in the trsining sessions with one instructor always 
assigned to the same students. 

During testing, students worked alone with one ex
perimenter who presented them with a drawing (Figure 2), 
and asked them to write programs for producing the figure 
away from the editor, turning to the editor only for 
debugging and at most five times. The figures were drawn 
on transparencies for overhead projectors which were 
attached to the computer scree'n so that students could 
compare their drawing with the target figure without 
difficulty. Students were interviewed according to the 
Piagetian clinical method; different questions were posed 
by the interviewer to students in an attempt to clarify the 
meaning of their answers but focusing especially on the 
turning commands and choice of programming units. 

Figure 2 TRIANGIBS to be copied in the 
LOGO Production Task 

Paper, pencil, a ruler and two types of protractor 
(semi-tircular and full-circle) were available to students 
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during testing. Interviews were tape recorded and tran
scribed for analysis. Students' drawings and the inter
viewer's notes were coordinated with the protocols to help 
in building a more complete description of the students' 
behavior. 

Results 

Three types of strategy were identified in the students' 
attempts to attribute numerical values to the turn !'Offl
mands. Since these strategies are strongly correlated with 
the ability to achieve a correct drawing, they will be 
treated here as levels of competence in LOGO, describing 
different types of semantic structure for the turn com
mands. No assumptions about the students' cognitive 
development are made on the basis of this analysis; we 
assume that variation here refers to the development of 
competence on the acquisition of a new language. 

Students in Level I, the lowest level of competence, 
seemed to treat the numbers attached to turn commands as 
labels hr Jines or angles obtained alter turde drawing has 
been completed. Turtle behavior and turtle drawing do not 
seem to be distinguished by these students. The following 
protocol illustrates this approach. 

Flavia: (trying to do line 2 in the figure) I will have to 
use 90. 

Interviewer: Why? 
Flavia: Because 45 is like this (shows tilted line) and 

90 is like this (shows horizontal line). 

Flavia's behavior illustrates line-labelling; she treats 
the numbers as labels for the lines obtained when the turtle 
is through with its drawing and does not take into account 
the fact that the effect of a 45 or 90 turn will depend upon 
the momentary position of the turtle. Angle labelling is 
illustrated in the protocol below. 

Joio: (trying the same turn, after using RIGHT 45 
for line I) LT 120. 

Interviewer: How do you know that it is 120 at the 
tip? 

Joio: It's the angle here, isn't it? It's more than 90, 
I suppose that it is 120 because it is the most 
used angle. 

Interviewer: Most used how? 
Joio: It's the closest one. 
Interviewer: Do you think it could be 130? 
Joio: ( ... ) I think it (120) will work? 

Although the student chooses the right value for the 
angle in the actual figure, he does so for the wrong reason 
since his initisl choice of turn command, Kf 45, followed 
by LT 120, will not yield the desired result, a horizontal 
line. The angle 120 chosen by Joao is the supplement of 
60, the intemal angle of an equiJate,al triangle; it is in fact 
"the most used angle" when students are drawing triangles 
with LOGO. 

Students working at Level II show what can be seen 
as a transitional level of competence between Level I and 
Level ill. Contrary to Level I students, they clearly distin
guish between Turtle behavior and Turtle drawing. They 
use labelling of angles but refer to Turtle behavior and not 
Twtle drawing. On some occasions, they attempt an ad
ditive conposjtion of angles, but these angles are chosen 
through visual estimates and are not yet described in terms 
of their deviations from an imaginary systems of axes, as 
they will be in Level III. As a result of visual estimation, 
Level II students may add the wrong measures of angles. 
The protocols below illustrate students' strategies at this 
level of competence. 

Marcel: uses RT 45 to obtain line I in the figure and 
LT 90 to obtain line 2; he then erases 90 and 
writes down 110. 

Experimenter: You had written 90, hadn't you? 
Marcel: Yes, 90 would be like this (shows the right 

angle a •··-~---· ) but here it V10uld be more. 
Wi 

Experimenter: 0.1{., but why is it 110? 
Marcel: I thought this difference (b) V10uld be 20, it 

is a small difference, 90 would leave this 
small difference ... This pert after the 90 tum 
Is small and the turn of the Turtle with a 20 
is small. 

Marcel uses the initisl turn of 45 pemaps labelling a 
tilted line as 45 and a horizontal line as 90. Then he 
reexamines his choices and correctly realizes that a tum of 
90 to the left when the Turtle stsrts from a position titled 
to the right will not bring it to the horizontal position. He 
correctly imagines that a 90 tum will bring the Turtle to the 
position obtsined after turning a right angle. He clearly 
dissociates here Turtle Behavior and Turtle Drawing 
thereby making a correct prediction about turtle behavior. 
However, he does not use the deviations from the system 
of axes to cany out the additive composition of angles; he 
estimates the difference between the predicted position of 
the turtle after a 90 tum and the intended position and adds 
the difference to the 90 angle. 
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Fmally, at Level m students clearly distinguish Turtle 
Behavior and Tmtle Drawing and 110 longer work solely 
by visual estimates. Their choice of turnmg coJDmnds re
flects an additive conposition of angles >micb are de
scribed with reference to a system of imaginary axes, 
deviations from which are treated as quantified angles. 
The protocol below illuslrates this conduct. 

Experimenter: How did you fmd 120 for this turn? 
Vania: Because I saw that this one (used to oblain line 

I) was 30, plus 90 ... 30 to bring it back to 
make it upright plus 90, which makes it be
come horizontal, that it 120. 

Eiperimenter: Did you use the protractor? 
Vania: I looked at it (but doesn't place it on the figure 

to obtain the measurement). 
Experimenter: Will you use 30 and 90 for all the 

other tips of the triangles? 
Vania: Yes, but here (to obtain line 3)you go 90 first 

and then 30, that will give you 120 again. .. 
Experimenter: How can it be the opposite of the 

other one? 
Vania: Because you have to know where the head of 

the tmtle is. In he first corner, it was like this 
(shows the tmtle's position after the first 
tum), so you go 30 to make it upright and then 
90 to make it horizontal. In this second corner 
it - from bis position (shows a hori:rontal 
line). 

The frequency of students per level of competence as 
a function of grade level and amount of prior training is 
shown in Table I. The distribution of high school students 
with 30 hours of prior training differs significantly from a 
random distribution according to the Kolmogorov-Smimov 
test (D = .542; p = .01); all other distributions are essen
tially random. This result indicates that older students are 
able to acquire more quickly a good semantic structure for 
dealing with turn commands in LOGO. 

Table I 

Frequency of students in each level of competence in turn 
commands by grade level and number of hours of LOGO 
instruction: 

7th Graden High-School 
15h. 30h. 15h. 30h. 

Levels of competence 
Level I 2 
Level II 2 I 
Level ID4 3 

4 
2 
3 

3 
0 
7 

I 

Discussion 

The analysis of levels of competence in choosing tum 
commands clearly shows that the semantic structure 
implicit in the strategies of the more competent LOGO 
users in our study is rather different from Papert's expec
tations. It is clearly coherent with Cartesian geometry
angles are measured as deviations from an imaginary 
system of axes--and thus coherent with Piaget's and his 
collaborators description of children's geometry. It is 
possible that with further training children would eventu
ally acquire a semantic structure for dealing with tum 
commands more coherent with Turtle Geometry. We 
have 110 evidence for this acquisition within the first 30 
hours of training. It is also possible that non-directive 
training is not the best way of leading students to the 
acquisition of Turtle Geometry; students may need to be 
explicitly told to put themselves in the Tmtle's place in 
order to acquire the body syntonic geometry of the Turtle. 
If they learn LOGO by simply looking at Turtle Drawing 
on the computer screen, they may be placed in a learning 
situation which does not favor body syntonicity. 

In summary, we found no evidence for the acquisition 
of a semantic structure implicit in turn commands directed 
from the outside by the intended semantic structure of the 
language. The evidence clearly indicates that the changes 
in the semantic structure of the turn commands follow the 
same psth described by Piaget and his co-workers in 
children understanding geometry prior to LOGO and 
Turtle Talk. 

Note 

'Papert (1980, p. 100) presents a program by a student which can 
be clearly Identified as an example of line labelling; the student 
chooses a tum of 120 every time he wants to draw a line with a 
particular inclination despite the fact that his first tum started 
with the turtle facing up while in all other turns the turtle started 
the tum from positions in which it was tilted 
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The Role of the Personal in Intellectual 
Development 

Herbert P. Ginsburg 
Teachers College, Columbia University, US4 

The essence of intellectual activity is usually consid
ered to involve thinking, rationality, reason. Perhaps the 
paradigm case is "logical" thinking of the sort described 
by J>ia&et, as when the child reasons according to prin
ciples of transitivity, or engages in the hypothetico-deduc
tive logic characteristic of formal operational thought. 
Typically we see this kind of thinking as "cold" and 
lacking in affect. One explanation for this is that J>ia&et 
focused on intellectual "competence"- the nature of 
underlying intellectual structures, unaffected by perform
ance variables like motivation, fatigue, environmental ob
stacles, and the like. Piaget was concerned not with what 
people ordinarilydo, but with what they are capable of 
doing under favorable environmental conditions. 

0278-4351/89/1&2-8 $1.00 © ICHC 

This is a valuable pe.spective, sometimes unappreci
ated, particularly in American psychology. But to under
stand behavior more fully, it is also neceSS81)' to assume 
another perspective, focusing on performance, not 
conpetence alone. If the aim is to understand what people 
ordinarily do and why they do it, then one nmst widen the 
scope of inqui,y to consider issues of personality, motiva
tion, and the like. Taking this perspective requires an 
examination not only of the underlying cognitive struc
tures, but of the "learning life,• of the way in which the 
individual conducts his or her intellectual activities in the 
real >Wrld. 

Furthermore, understanding the learning life requires 
a depth psychology account of intellectual development, 
not merely a cognitive one. Contrary to J>ia&et, intellectual 
development is not primarily the development of logico
mathematical structures motivated by an equilibration 
process. Contrary to Vygotsky, intellectual development 
is not primarily the socialization of advanced forms of 
intellect. And contrary to the information-processing 
theorists, intellectual development is not primarily the 
acquisition of procedural and declarative knowledge. 
Instead, intellectual development is intimately bound up 
with the development of the personal-identity, defense 
mechanisms, motives, emotional attachments, and the 
like. Only by developing a depth psychology of intellec
tual development, difficult and ambitious as the task may 
be, can we understand the complexity of intellectual 
performance in the real >Wrld. And perliaps such a frame
work will help us to develop educational and clinical 
practices designed to avoid squandering children's 
enormous intellectual potential. 

Method 

My argument is buttressed with examples drawn 
from our recent research, as well as anecdotal accounts. 
This research, conducted over the past several years, 
involves case studies of children and adults, most with 
learning problems. Several groups of individuals were 
seen: 

A. College students at a prestigious university who were 
doing at least adequate >Wrk and were willing to talk about 
their learning experiences. 

B. College students at a large urban university (seen in 
collaboration with Professor Ned Mueller) who felt that 
they were experiencing difficulties in the academic area 

C. Students at a small college who seemed to be experienc
ing a very traditional form of education. 
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D. Graduate students at a large urban university who 
considered themselves to suffer from "math anxiety" 
(Ginsburg & Asmussen, in press). 

E. Asian-American college students at a prestigious uni
versity who exhibited high levels of academic achieve
ment (Mordkowitz & Ginsburg, 1987). 

F. Children in a mental health clinic (seen with Prof. 
Mueller) and children in ordinary schools, all with learn
ing problems of varying degrees of severity. 

1bese individuals were generally interviewed in an exten
sive manner-for at least an hour, often two or three hours, 
and in some cases for six hours. The interviews were 
usually guided by a flexible protocol which left a good 
deal of room for variation in response to the individual. In 
several cases, a brief projective measure, The MUG 
(Mueller & Ginsburg, in preparation), was administered. 
Also, in some cases, both children and adults, we observed 
problem-solving activity (in mathematics) directly. The 
clinic children seen with Mueller were also given several 
standard tests (like the WISC). All of the sessions with 
children and adults were tape recorded and transcribed, 
some verbatim and some in summary. These "data" were 
then interpreted in what I hope are creative ways and lead 
to the propositions forming the body of this paper. It 
concludes with a discussion of the implications of this 
view for fostering intellectual growth. -

The Nature and Personality of Intellectual Activity 

One aim of the interviews was to obtain some insight 
into the nature of the individual's learning life. What is it 
like to be a thinker and learner in the everyday world? Our 
results show first that everyday intellect is suffused with 
emotion. 

Emotion 

Cognition is "cold and affectless" mainly when we 
abstract it from the living reality. My first proposition is 
that in reality, envtion is part of intellect Of course, many 
writers agree that emotion, motives, and the like can 
influence intellectual activity, as when a child fails in 
school because he is poorly motivated or because anxiety 
overwhelms his thought. But I mean to go further, claim
ing that emotion is not a separate factor which influences 
intellect. Rather, it is impossible to separate emotion from 
cognition; intellectual performance is suffused with both. 

For example, Butch (described in Ginsburg, 1989), a 
third grade child, exhibited depression in his mathemati
cal problem-solving. Everything he did in arithmetic was 

listless, slow, and expressed helplessness and incompe
tence. His work was not just wrong; it expressed misery. 
For Arnold, another third grader with learning problems 
(Ginsburg & Allardice, 1984), the emotion was over
whelming and even found bodily expression. Arnold said: 
"I usually hate math because it hurts my fingers ... it makes 
my fingers feel frail. It feels like I can't write ... It hurts. I 
feel like I'm going to snap the pencil in half." A rather 
dramatic woman of about 50, Lucy, a graduate student, 
claimed that she "almost fainted, almost died" when she 
had to deal with mathematics, and became "nauseous, 
tense, with a buzzing in my ears." At one point, during a 
problem solving session, she insisted in terminating her 
work lest she throw up in my office, a possibility neither 
she nor I wished to explore. Oearly for Lucy, emotion is 
a part, a very unpleasant part, of her intellectual work in 
this area, and her mathematical thinking did not operate in 
an emotional void. Emotion and cognition were blended 
in an ongoing activity. And for many individuals, the 
emotion of intellect is unpleasant, negative, hostile, and 
painful. 

For others intellectual performance involves peak 
experiences, and even a "love" relationship. Mary, a stu
dent at a prestigious college, reported that she "loves" 
reading. For her, that activity is filled with a glow, and 
makes her feel exuberant. Paul, another student at that 
college, felt the same way about writing. He reported that 
the mere act of putting words together in a logical and 
elegant fashion entails an ecsiatic experience. Arthur, also 
a student at that college, was asked why he is majoring in 
physics. He replied, in a serious manner: "It's something 
I was born with ... I feel like it's great, I feel like I'm 
fulfilling the master plan for Arthur Rivers. I mean he's 
supposed to go to college and learn physics ... It just feels 
right. I mean I love studying it. I love studying other 
things, but this is the thing I love studying more than other 
things ... It feels good to know the stuff, to learn about it, 
I'm fascinated by a lot of it and so it's something that I 
kind of eat up, you know, like good food when I'm 
hungry." 

Traits of Intellect 

Not only is intellect suffused with envtion, in every
day life, ..., tend to describe it in terms of various "traits." 
For example, in an informal study of letters of recommen
dation I found that professional psychologists do not 
describe graduate students in terms of IQ, formal opera
tions, or information processing techniques, but in ternts 
of traits (often in situational context) like independence of 
mind, risk taking, creativity, originality, flexibility of 
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thought, intense motivation, and the like. I have also found 
that clinicians use similar concepts to discuss their learn
ing disabled clients (although the opposite dimensions are 
used). Further, use of similar trait concepts is a key part of 
clinicians' interpretation of subscales of the WISC (see 
Rapoport, Gill & Shafer, 1976). 

The traits of intellect usually fall into several areas, 
among them cognitive style and motivation. Cognitive 
style is an old and complex topic in psychology but 
currently an unpopular one. like Messick (1984), we use 
the notion of style to refer to "habits of thought," to ways 
of thinking that make the individual unique and constitute 
his "personal signature" (Goodman, 1978). In our obser
vations in the clinic and in everyday life, we find that some 
styles seem to be crucial, producing beneficial or delete
rious effects depending on the context; styles are not 
uniformly effective or ineffective. 

An example of a style harmful to problem-solving in 
most contexts involves a strong rigidity of thought, as 
displayed by several graduate students in a study of "math 
anxiety" (Ginsburg & Asmussen, in press). Their ten
dency was to approach problems in one way only, usually 
relying ve,y heavily on rules and formulas thought to be 
appropriate. For example, one subject was given a prob
lem in which the goal was to determine whether a sum of 
two fractions was correct (1132 + 3/16 = I 1/8). Lucy 
engaged in extensive calculations, converting to common 
denominators and getting into a good deal of trouble along 
the way. A simpler solution would have been to look at the 
relative magnitudes of the fractions, noticing that since 
they were both so small, they could not posslble add up to 
a sum larger than I. But Lucy, like others, was stuck on the 
limited approach; her rigidity prevented her from using 
her "conumn sense." 

While we tend to have little confidence in style tests, 
partly because of various psychometric problems (al
though see Zimiles, 1986, for a more general critique), we 
are quite committed to the use of style concepts in every
day life. We are all expert at describing styles, for ex
ample, those of colleagues and students, and our repertoire 
of style terms is usually considerable. In this case we 
should trust our naive psychology: clearly intellectual 
performance must be described not only in terms of 
information processing, but cognitive style as well. 

Motivational terms are also frequently employed to 
describe intellectual activity. We see people as deeply 
committed to their work, engaged, intense, workacholic, 

and the like. A number of psychologists have recently 
focussed on issues of academic motivation, investigating 
the influence of non-cognitive factors on intellectual ac
tivity (for example the work of Ames & Ames, 1984). 
Thus individuals whose tendency is to ruminate on failure 
tend to exhibit lower levels of achievement than do those 
who engage in active attempts to solve problems. Those 
who wish to look good in the eyes of others tend to take 
fewer risks in learning and to avoid getting wrong an
swers. Clearly motivational characteristics like these can 
be central to intellectual performance. 

It is also important to describe the learning life in 
terms of concepts of the subject ,miter and the se/£ For 
example, Lucy maintained the explicit belief that 
mathematics must be done quickly. "I want to get it done 
fast and I don't like to show the guts of it, the messiness of 
the page. I don't want to work through it I want to have the 
answer come from the sky. Everyone else gets it quickly." 
Lucy's theory of mathematics learning is widely shared. 
Many students (and teachers and parents) believe that 
mathematics is a subject in which one attempts to get right 
answers as quickly as possible. 

In another study (Kaplan, Burgess, & Ginsburg, in 
press) we showed that some children believe that the 
essence of mathematics is pleasing the teacher. This is 
their primary cognitive representations of mathematics. 
Talk about principles and strategies is quite beside the 
point. 

Many of our subjects did not believe or understand 
that mathematics is a way of thinking, and that it is quite 
acceptable to struggle through to a solution which may be 
only one of several possible. And clearly this belief then 
influences the way in which problem solving is con
ducted. Many children exhibit no thought in doing mathe
matics-they take wild guesses and act stupidly-pre
cisely because they believe (often because they have been 
taught) that mathematics requires quick answers, or that 
one must get the answer the teacher has in mind, and that 
as a corollary, thinking is cheating. 

Self-concept or theory of the self as learner also 
influences learning. We all know, and our evidence con
firms, that many children do not believe they are capable 
of learning, at least in certain areas. Sometimes, as a result, 
they avoid learning situations, they act the fool, they do 
not struggle. Many elementary school teachers hold such 
views of themselves in regard to mathematics learning. 
That is one reason why they avoid teaching the subject at 
all costs and why children learn it so poorly. 
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A more productive view of self as learner of mathe
matics might involve discovering, for example: 

What one's capabilities are-What one can and can 
not learn. 

What one feels about mathematics. 
How long it takes one to learn something. 
That one can learn even if initially confused. 
That it is acceptable if one does not know everything. 
That one can ask for help. 

In other words, the concept of self as learner is not global. 
In involves theories, facts, speculations, and feelings 
about one's intellectual activities. It is a series of emo
tional propositions about oneself that seem to play an 
important role in learning and motivation. 

The Personality of Intellect 

Furthermore, the constellation or configuration of 
these traits can be said to describe the "personality" of 
one's intellectual life-that is, what separates the person 
from others and reveals bis or her "distinctiveness." Nor
mally we speak of personality as if it were limited to the 
constellation of interpersonal traits (aggressiveness, de
pendency, etc.) operating in the social world. But such a 
restriction is not necessary. Intellect has a personality too, 
and like one's social personality it may be rooted in deeper 
structures. 

Shapiro (1965) has given a fascinating description of 
several such personality types, which he refers to as 
"neurotic styles" of cognition. These include, for ex
ample, the obsessive thinker whose thoroughness leads to 
the creation of unnecessary puzzles to be solved. True, 
Sbapiio's subjects were "patients" in analysis, but they 
seem quite similar to "normals" with whom we are all 
familiar. 

The description of a personality of intellect in terms 
of motivation, style, concept of self as learner, and the like 
is valuable but somewhat unsatisfying since it is silent 
with respect to origins and dynamics. Personality descrip
tions like these are superficial in the sense that they deal 
with what is on the surface. We see that rigidity clearly 
characterizes Lucy's behavior. But we must go further and 
ask: Why did she develop such an orientation and why 
does she maintain it? What are the origins of the rigidity, 
of the sense of identity? Why does this complex system 
operate as it does? Answering questions like these re
quires consideration of dynamics and development-a 

depth psychology. Understanding what underlies the per
sonality of cognition requires looking under the surface, 
just as we might try to interpret a dream, to examine deeper 
processes. 

The Dynamics of Intellect 

Psychoanalysts have made the most important contri
butions to understanding this relatively unexplored sub
ject In this view, one rmy understand the personality of 
intellect-just lilre the social personality----as the product 
of underlying processes like the mxhanis11B of defense, 
tenperamental factors, and the like. Thus Shapiro de
scribes obsessive thinking as one aspect of the obsessive 
character. These traits of thinking, or others such as 
dependency of thought, are in part the results of defenses, 
those deep-seated, unconscious ways of coping that are 
established early in life, fundamental to character, and 
often very difficult to change. I speculate that some styles 
are less changeable than others precisely because the 
former are more deeply embedded in personality structure 
than the latter. 

Another example of dynamic explanation is Anna 
Freud's (1946) notion of the "restriction of the ego," a 
most useful concept in understanding learning difficul
ties. For some children, openness to the world and to the 
kind of learning that can result is so painful that they pull 
in the ego, protect it, and shelter themselves in ignorance, 
or in rote, mechanical learning. The result is children with 
a resistance to experience, with little curiosity, few intel
lectual interests. These deep-seated forms of motivation 
can over-ride the equilibration process described by Piaget 
and can perhaps explain such surface characteristics as 
Dweck1s notion of performance orientation. 

Development 

1he enr,tion of intellect often begins early in life. 
Several of our subjects report that intellectual emotions 
get established early in life. Some children say that they 
"always hated" math, as long as they can remember. My 
observation is that in the first few years of school, most 
children are interested in and feel good about all forms of 
learning. But, within a short period of time, many children 
develop strong "antipathies toward the learning of particu
lar subjects and, by the third or fourth grades, are essen
tially lost to the educational system. If there is any critical 
period for the establishment of negative feelings toward 
school learning, it must be in the early years of school. 
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Falling in love with learning also gets established 
early in life. This is a kind of bonding process, a kind of 
object relations in the psycboanalytic sense, that involves 
particular subject matter. Paul's infatuation with writing 
developed, as he remembers it, somewhere arowtd the 8th 
grade, and has persisted. Arthur claims that he was "born" 
with his interest in physics. While this is an exaggeration, 
the interest seems to have begwt in elementary school. 
Seymour Paper! (1980), mathematician, psychologist, 
and creator of the first major computer language for 
children, reports that he "fell in love" with gears at the age 
of four and that this served as the prototype for his interest 
in mathematics thereafter. Mary reports that one of her 
cen1ral interests, reading, developed in the first few grades: 
"My favorite sort of school memories are about reading ... 
It was ve,y exciting ... It enabled me to sort of ... hear about 
the lives I didn't have. It told me 1MUl! other people's lives 
were like." 

These intellectual relationships rmy be tied to signifi
cant personal experience. Mary reported that one of her 
major interests involved wtderstanding and helping oth
ers. "One of the reasons that I'm interested in cowiseling 
is that. .. I grew up in an alcoholic home. It was extremely 
difliculL It has determined a lot of my interests in the ways 
in which I want to help people and also I'm fascinated by 
alcoholics. I'm also interested in literature because I feel 
there are certain authors who write about how individuals 
come to feel certain ways and make certain choices and by 
studying that it makes more clear my own recent behav
ior ... Having bad painful experiences growing up with my 
mother's alcoholism I am able to have compassion with 
other people's pain and I am naturally drawn to helping 
people to try to learn certain things about themselves." In 
brief, intellectual relationships are often bonded early in 
life, and may be tied to personal experiences. 

What is the role of significant others in the develop
lnent of intellect? Some writers have described a kind of 
instructional process (e.g., Hess & Shipman, 1965), and 
others have postulated a more direct and sensitive process 
of "scaffolding" (e.g., Greenfield, 1984 and Rogoff & 
Gardner, 1984). But in my view, it is worth considering 
other processes like identification and expectation 

Intellectual interests are often mediated by a process 
of identification with significant others. For Mary, the 
most significant person was her mother. "[lbroughout 
school) the most influential relationship was probably 
with my mother. She's the person who would help me get 
books out of the library and she always read my papers and 
she helped me sort of form my taste." But teachers were 

also important for Mary. In particular, she remembers a 
second grade teacher. "I remember her because she helped 
me to read alone and she responded to the fact that I really 
liked to read. It was always important to me to know that 
they cared about reading too. I would identify ve,y strongly 
with a teacher if they really cared about something." So 
for Mary, it was useful for the significant other to help her 
with the technical aspects of reading; but it was more 
important that the other be a good model and resonate to 
her intellectual passions. Similarly, Paul reports that his 
interest in writing was mediated by a teacher who not only 
taught the mechanics of grammar but lited a passion for 
the subject Teaching cannot be reduced to instruction; the 
living commitment and moral example are cen1ral. This of 
course is an ancient principle of 2.en Buddhism, in which 
the master does not teach but is. 

Intellectual development, perhaps especially in the 
area of acadenic learning, can be strongly inOuenced by 
general parenlBl pressure and expectation. Interviews of 
Asian-American students concerning the ways in which 
their parents influenced their academic achievement 
(Mordkowitz & Ginsburg, 1987) yield several striking 
phenomena. Asian-American parents expect their chil
dren to do well in school, place a high value on education, 
put pressure on their children to do well, and arrange living 
conditions so that the children can do well. The parents 
may or may not help the children with homework. Indeed, 
some of the parents may be so poorly educated themselves 
or so unskilled in English that they may not have the ability 
to teach. This phenomenon is similar to the Jewish immi
grants in the US in the early 1900's. While many were wt
schooled, they had a respect for learning and expected 
their children to do well in school. Similarly, the Asian
American parents often force the children to do homework 
and achieve good grades. They release the children from 
household responsibilities so that they will have the time 
to study. The message is: I'm sacrificing for you so that 
you can learn. The parental influence, then, operates not 
through teaching or scaffolding but through general pres
sure and control, perhaps mediated through carefully 
nurtured guilL 

What promotes development? A kind of self-directed 
process seems to be involved, but it is not equilibration in 
the Piagetian setlSe. Intellectual gro»th often involves 
finding a m,y to connect significant personal concerns 
with school learning. Sometimes Mary could muster little 
enthusiasm for school work. She found it hard to concen
trsle on her studies and did slipshod work. Why? Mary felt 
that many of her difficulties in academic work stem from 
its isolation from her personal concern,;. "ACldemic life is 
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definitely separate from your personal life, separate from 
your family life ... but you can't separate it entirely ... and 
when you ignore that a lot of problems come up ... academ
ics is a very personal thing... it is based not only on 
intellectual things but on emotional things." As her 
confused presentation indicates, Mary was obviously slI'Ug
gling with these issues. For her the central learning prob
lem was to fmd a way to relate her studies to the meaning
ful issues of her life. If this cannot be done, she suffers 
from lack of interest and motivation. 

Intellectual groHtb often inmlves 'M>rking through 
issues of identity. Woody is a college student who has 
experienced considerable difficulty in his studies. He 
came from a family in which his father is a Professor of 
Mathematics and his older brother an excellent student in 
chemistry and computers. Woody felt strong pressure to 
excel in academic work and to go on to a career in 
mathematics. He sees this as the fatherly, brotherly thing 
to do. Woody gives the impression of being effeminate. 
When he realiz.ed that the interview was to be videotaped, 
he said, in a half-joking fashion, "If we're going to be on 
camera, I'll fix my hair." He consistently used fancified 
language, referring for example to a picture of a brutish 
looking person as "this gentleman" and referring to his 
own depression as "early morning awakening psycho
motor retardation.• In response to one of the pictures of 
the MUG projective test-a person sitting with some 
books in a cozy living room-he says: "lhis young man 
is studying organic chemistry and is in a very comfortable 
home and he's not too pleased studying because he sort of 
feels like he'd rather be over here eating this banana. .. 
there's attractive fruit over here. He eats the fruit and 
smells the flowers and you really wonder why he's taking 
such hard science courses.• Llke the young man in his 
story, Woody feels that he must take hard science courses 
because that is the masculine thing to do, as determined by 
his father's and brother's example. But at a deeper level, 
Woody's preferred identity is feminine. He would rather 
eat the fruit and smell the flowers. Our interpretation is 
that Woody's academic difficulties are related to his 
identity conflict. To resolve the conflict he needs to find 
what he defines as a feminine outlet for his intellectual 
concerns. 

Conclusions 

Our exploratory research points to a few general 
conclusions. First, that the learning life is clearly "hot": it 
is bound up "'7th emotions, beliefs, styles, motives, and 
identity. We use the ambiguous phrase bound up "'7th 
because the relations among these "factors" or "proc-

esses" and intellectual activity are complex. In one sense, 
some of the factors are parts of intellectual activity in the 
real world. Mathematical thinking, for example, can in
volve more than strategies and concepts. It can also be 
fearful, dependent, and persistent. We might even say that 
thinking has a "personality" which needs to be described 
and explained. 

In this view, we need to broaden our conception of 
what intellectual activity is all about. It is more than 
strategies, knowledge, and procedures. Instead, intellec
tual activity is in significant measure the operation of 
beliefs, feelings, motives, and the like. As Dewey (1933) 
pointed out many years ago, intellectual activity does not 
exist in isolation from other aspects of the person. 

Second, to understand the complex nature of hot 
cognition, or the personality of cognition, we need to 
consider both dynamics and development. Thus we need 
to understand how the observed intellectual activity, style, 
feeling, and motivation operate within the context of the 
individual's identity and general personality structure. 

Developing such a theory is an important task for the 
future. We suspect that one important resource for such a 
theory is the "ego psychology• stemming from the psy
choanalytic tradition, as exemplified by the work of such 
writers as Shapiro (1965). In this tradition, cognitive 
functioning, in both the "normal" and pathological, is seen 
as but one aspect of ego development, which in tum must 
be understood in the context of the dynamics of personal
ity, including such matters as the ways in which cognitive 
styles emerge from the functioning of the defense mecha
nisms. In other words, the personality of cognition must be 
understood in terms of the dynamics of personality. 

Third, it must also be understood in the context of 
development. Hot cognition has a history, and this history 
may often involve relations with the parents or significant 
others. Understanding of thinking-emotion-motiva
tion requires a truly developmental approach which at
tempts to elucidate the meaning of current styles, emo
tions, and motives in terms of attempts to cope with early 
experiences of various types. Thus, a "perfonnance orien
tation• may be understood by reference to a dependency 
relation with a parent; an ahistorical approach sheds little 
light on the meaning and origins of the motivation. 

Fourth, our approach to understanding intellectual 
activity in the context of the personal suggests a somewhat 
different approach to education. In our view, education is 
more than acquiring information or cognitive skills or 
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getting good grades on tests. For many students, education 
is not just the cognitive activity we thought it was. It is 
something more personal, more deep. Most crucially, it 
involves finding personal meaning in what is taught in 
school. One crucial aspect of education involves the 
integration of the fom,aJ into the personal. This in turn is 
intimately bound up with the development of identity, of 
defense mechanisms, of emotional attachments. Real 
learning is not just mastering skills; it is at least in part the 
process of creating meaning by connecting what is taught 
to what the individual sees as important. 

One way of interpreting this kind of integration is in 
terms of Piaget's and Vygotsky's theories. Piaget (1952) 
pointed out that assimilation is the "prime fact of mental 
life." By this he meant that we always interpret the new 
data of experience in terms of what we already know, in 
terms of existing structures. For many students, the new 
data are the subjects taught in school and the most impor
tant existing structures are their personal identities. (Thus 
Mary bad to integrate school work with her concern with 
understanding and relating to others.) Vygotsky (1962) 
pointed out that the chief task for education is to integrate 
spontaneous and schooled knowledge, to blend the per
sonal and the social. For many students, the integration 
must involve not only schooled knowledge with infom,al 
knowledge (for example, written and mental arithmetic). 
It must also involve connecting schooled knowledge with 
intimate personal concerns. If that kind of integration is 
not achieved then many individuals find that schooling, 
however successful it may appear by conventional crite
ria, is merely "academic"-that is unimportant, person
ally meaningless, and irrelevant. 

The study of the learning life thus points the way to 
more meaningful education. Certainly the educational 
process cannot resolve many of the emotional conflicts 
which inhibit children's learning. Nor can the educational 
process modify character. But there is much that can be 
done in school to make education personally meaningful. 
If knowledge is also emotion and motive, and if knowl
edge develops in the context of the dynamic personality, 
then a concern with cognition and instruction is not 
enough: education must involve more than the transmis
sion and even reinvention of knowledge. F.ducators need 
to learn to foster the integration of the formal and the 
personal. They need to develop techniques to help stu
dents understand their learning styles, their feelings about 
learning, their identities as learners. Traditional psycho
therapies generally fail to do this. They focus primarily on 
interpersonal relations. Traditional counseling approaches 
also fail to focus on learning related issues. So we need 

new approaches to help students find meaning in fom,aJ 
education; this will go at least part of the way towards 
liberating their potential for intellectual growth. 

Note 

'I wish to express my appreciation to the Spencer Foundation for 
its generous support of the preparation of this paper. 
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Two Microworlds of Computation: How 
are they Related? 

Giyoo Hatano 
DokkJ,o University, Japan 

A large number of Japanese children learn abacus 
operation in addition to paper-and-pencil calculation. 
Abacus operation, still used daily at small shops, is learned 
either without systematic instruction or at specialized kind 
of private school (called an abacus juku), while paper-and
pencil calculation is taught in regular math classes. From 
a cognitive point of view, these two sets of skills are highly 
similar: they share the goal (finding the answer) and 
component subskills (e.g., use of basic number facts, 
borrowing from the next left). They are different primarily 
in two aspects. (1) While in paper-and-pencil calculation 
a figure written in the answer column is not modifiable, a 
resultant number on an abacus can easily be changed, 
which allows abacus operation to proceed from the largest 
to the smallest (units) figures, whilepaper-and-pencil 
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calculation goes in the opposite direction. (2) Since the 
Japanese abacus has a bead worth 5 in the upper section 
(instead of nine I-beads) in each column, carrying and 
borrowing procedures on the abacus are a little more 
complicated than those with paper and pencil. See Fig. 1 
for an example. 

Figure I. Addition with an abacus, 34 + 23 = 57 

a. Enter 34. 

' ' +2 0 ' +3 

b. Enter the 5-bead and remove three I-beads in the 
tens column, since the 2 in the figure 23 cannot 
be added by using I-beads. 

c. Enter 5 asnd remove 2, since the 3 in 23 cannot 
be added by using I-beads. 

From a socio-cultural point of view, however, the two 
sets of skills are segregated almost completely. Students 
are not allowed to use an abacus for solving problems in 
regular math classes (except when they learn how to 
operate it in the 3rd grade). Paper-and-pencil calculation 
is almost never done at an abacus juku. Thus they often 
regard the sets of skills as belonging to two separate 
microworlds, in only one of which each set can legiti
mately be used. 

Therefore, two contrasting predictions can be derived 
about transfer from abacus to written calculation. One 
may expect there to be "analogical" transfer from one set 
of skills to the other: more specifically, one may expect 
that if students are good at abacus operation, they can use 
their knowledge about how to run the operation when they 
work on paper-and-pencil calculation. Quite to the con
trary, one may equally well expect these sets of skills to be 
completely independent, i.e., that practice in abacus op
eration has no effects on calculation with paper and pencil. 

In this short article I would like to claim that neither 
prediction is right. First, I will show that it was very 
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difficult for children to improve written calculation by 
using their knowledge of abacus operation. Second, I will 
demonstrate tbat tbese sets of skills are not independent: 
abacus operation influences written calculation, probably 
through enhanced proficiency in shared component 
subskills of bssic computation. Finally, characterizing 
abacus operation as a form of non-school mathematics 
tbat is radically different from "street mathematics" ob
served by Carraher, Carraher, and Schliemann (1985), I 
will derive a few implications for mathematics instruc
tion. 

Mapping Instruction Does not Work 

Amaiwa (1987) tried to apply a simplified version of 
the "mapping instruction• (Resnick, 1982) between aba
cus operation and written calculation and found tbat it did 
not work well. Her subjects were twenty-six 3rd-graders 
who solved three-digit subtraction problems almost al
ways correctly with an abacus, but often incorrectly with 
paper and pencil. In an instruction session, tbey were in
dividually asked to solve each of those problems on "1licb 
they had made errors in a pretest for written calculation, 
alternating the two computational procedures, i.e., solv
ing with paper and pencil in steps 1, 3, and 5, and with an 
abacus in steps 2 and 4. In step 4, the subjects were 
required to subtract units first, then tens, and finally 
hundreds, i.e., in the reverseorder of the standard abacus 
operation, to make the mapping of the two procedures 
easier. 

Two major patterns of responses were observed. Out 
of the 38 problems altogether, 24 were • + - + -, i.e., con
tinuously making incorrect responses in written calcula
tion whereas correct responses with an abacus; 11 were 
- + +, i.e., solving the problem correctly on an abacus 
enabled the subjects to answer correctly with paper and 
pencil and thus tenninated the session. In the latter type, 

-there seemed to be positive transfer, but results of a post 
test suggested tbat at least some subjects had just copied 
the answer obtained in step 2 which they believed to be 
correct. When they were given a new set of problems for 
written calculation, tbey tended to make the same types of 
errors as before. In sum, the subjects generally failed to 
repair their written calculation procedure by transferring 
knowledge about the abacus procedure. Another set of 
similar mapping instruction, attempted a few weeks later, 
did not work either. 

According to protocols obtained by interviews, sub
jects who continued to rely on a "buggy" paper-and-pencil 
procedure while always giving the correct answer with an 

abacus believed tbat perbapsthere was one correct ans-.
for both procedures. They were not confident as to whether 
getting two different answers necessarily meant tbat an 
error was involved in at least one procedure. 

Considering tbat Amaiwa's subjects had learned 
abacus skills fairly well, it may be surprising tbat they 
failed to repair their paper-and-pencil procedure by rely
ing on the isomorphism between the procedures. This 
instruction may have failed because the students did not 
understand tbe meaning of each step of the "bsse" abacus 
operation and thus could not derive specific pieces of 
information to repair the "target" writing procedure. In 
abacus operation, as pointed out by Hatano (1988a), a set 
of specific "productions" (condition-action pairs, for ex
ample, "If addend 6 cannot be entered, subtract 4 from the 
target column and add 1 to one column left") replaces a 
general "production" (like "If an addend needs more 
beads than available, subtract the complementary number
to-10 of the addend from the target column and add 1 to 
one column left"). A few of these specific productions are 
then merged into a single production to get the final state 
directly (e.g., "If 7 is to be added to 6, leave 3 at tbe target 
column and add I to one column left"). Therefore, it 
becomes harder and harder to unpack the operation and 
find the meaning of each step. In other words, abacus 
operation as executed by experienced users is semanti
cally opaque, that is, symbols and referents are not clearly 
connected during operation. 

lltls semantic opacity was revealed more directly in 
interviews about tbe logic of specific steps with children 
learning abacus skills (Amaiwa & Hatano, 1983 ). Those 
who had had a year of practice at an abacus juku could 
explain the multi-digit subtraction procedure no better 
than their agemates who had just started the practice. 

Effects of Abacus Learning on Written Calculation 

Despite difficulties in mapping tbe two sets of knowl
edge, practice in abacus operation has considerable effects 
on written calculation, as revealed by Amaiwa & Hatano 
(in press). Third-graders who had been learning abacus 
operation at an abacus juku were not only much faster in 
bssic computation (i.e., single-digit addition and finding 
complementary numbers-to-I 0) than their classmates who 
were not going to an abacus juku, but also much better in 
performance on paper-and-pencil multi-digit subtraction 
problems under a lenient time limit. Furthermore, the 
former group of children solved significantly more often 
than the latter open-sentence problems (e.g., •- + 8 is 
equal to 41," •- -7 - 27") and writing-an-expression for 
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won! problems (e.g., "There are 21 boys and 18 girls in 
Talcashi's class. How many pupils are there?"). To elimi
nate unknown differences between the learners and non
learners statistically, we entered school grade in language 
as a covariate in the above comparisons. Since there were 
no differences in grade in science or social studies when 
the grade in language was entered as a covariate, it is 
reasonable to claim that this quasi-experimental design 
worked pretty well and that the above differences were 
due to transfer from abacus learning. Effects of abacus 
teaming upon paper-and-pencil calculation were thus 
fairly far-reaching and substantial. 

Why did such transfer occur? I infer that it was 
produced not through facilitated conceptual understand
ing, but through proficiency in shared subskills of simple 
computation. Proficiency in simple computation is a plau
sible ·candidate, because (a) a number of previous studies 
as well as the present one reveal that abacus learning 
greatly enhances it, and (b) eliminating its effect in statis
tical analyses makes other differences negligible. 

I believe that component skills trained in abacus 
teaming are used in written calculation. This is because 
these skills consist of sets of productions, and each pro
duction is "fired" more or less automatically-whenever 
its condition is satisfied, the corresponding action is 
executed. Since abacus-teaming students are very good at 
these skills, they can concentrate on higher-order proc
esses including monitoring of the steps of executive strate
gies and checking answers in a way suggested by Case 
(1982). It may also be possible for them to constrain their 
problem solving by quickly estimating the answer at sight. 
Another possibility is that their confidence in their ability 
to solve multi-digit subtraction makes them less "biased" 
Iowan! addition than non-learners, when subtraction is in 
fact required. (Most of the errors the non-learners in this 
study made for open-sentence and writing-an-expression 
problems were using addition when subtraction was re
quired; the reverse was rare.) 

On the other hand, assessed comprehension of the 
ploce value principle or trade between columns, which is 
the conceptual basis of the borrow-and-decrement proce
dure in both abacus and written calculation, was not 
enhanced by abacus learning. When required to judge 
whether paired sets of numbers, expressed in terms of 
units, tens and hundreds, were equal or not (e.g., compar
ing [9 tens and 9 units) with [8 tens and 10 units); [8 
hundreds, 2 tens and 6 units) with [7 hundreds, 11 tens and 
16 units]), abacus learners and non-learners performed 
equally poorly. Even when used as an additional covari-

ate, the assessed comprehension did not change at all the 
observed differences in other tests. 

Why did practice in procedural skills of abacus opera
tion have no effect upon this conceptual understanding? I 
interpret this to be also due to the semantic opacity of 
abacus operation. In addition, practice on an abacus does 
not require or encourage conceptual understanding, be
cause the same instrument is used throughout without 
changing constraints, and speed is emphasized (See Hatano 
& Inagaki, 1986). A5 a result, abacus operators apply the 
trade principle thousands of times without consciously 
recognizing it. 

Abacus Operation as a Form of Non-School Mathe
matics 

Abacus operation in Japan and street mathematics in 
Brazil (Carraher, et al., 1985) seem to have much in 
common: (a) both are used almost exclusively for com
mercial activities; (b) both can be acquired without sys
tematic instruction; (c) both are outside of the "official 
knowledge" taught in school. In short, both are forms of 
non-school mathematics. However, the two are radically 
different in semantic transparency, i.e., how clear the 
meaning of each step of calculation is. Steps of street 
mathematics are clear in meaning because representations 
manipulated in it are information-rich, and ways of ma
nipulation are analogous to actual"activity dealing with 
goods or coins and notes. For example, in order to find the 
price for twelve lemons of Cr$ 5.00 each, a nine-year-old 
child who was an expert street mathematician counted up 
by 10 (JO, 20, 30, 40, 50, 60) while separating out two 
lemons at a time (Carraher, et al., 1985). Quite to the 
contrary, representations of numbers on an abacus, though 
visibly concrete, are impoverished in meaning, and the 
way of manipulation is just mechanical. 

Where these differences come from is an interesting 
question that merits close examination, but let me discuss 
it just briefly (See Hatano, 1988b, for more detailed analy
ses). I think the differences in semantic transparency can 
be primarily attributed to their functions in and the nature 
of the commercial activities they serve. Street mathemat
ics is a means by which a vendor and a customer reach an 
agreement that calculation is done right. It is an interper
sonal enterprise that requires semantic transparency
otherwise the customer may be suspicious. This semantic 
transparency also serves to make calculation accurate. It 
cannot be very quick, because it manipulates rich repre
sentations. However, the economy in which young Brazil
ian vendors live does not usually give priority to high 
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efficiency in calculation. In contrast, abacus operation is 
basically a solitary activity, handling large numbers quickly 
and accurately. Operators are not interested in the seman
tic transparency of the calculation process, because they 
believe that their skills ensure the correctness of the 
answer. Even when abacus operation is used in interper
sonal situations of buying/selling, both a vendor and 
customer are willing to accept the answer in most cases, as 
they trust the skills. In fact, a majority of Japanese custom
ers seem to think that abacus operation is more dependable 
than calculation with a calculator. Experienced abacus 
opemtors must be able to handle impoverished represen
tations, because the economy in which abacus operation 
developed required efficiency. 

We can derive two instructional implications from 
the analyses above. First, we should not underestimate the 
significance of practice in basic computation for the 
development of mathematical cognition. Abacus learning 
is seen as having very limited instructional value, once we 
accept the premise that comprehension is much more 
important than proficiency. However, the present data 
indicate that enhanced proficiency in basic skills has 
wider effects than usually expected. It seems that "prac
tice for proficiency in skills has its place" (Brownell, 
1956, p. 129) in mathematics education. 

Considering the semantic opacity of abacus opera
tion, it is highly unlikely that its practice induces mathe
matical intuition (Resnick, 1986). However, abacus learn
ers tend to do well in school mathematics, especially 
during elementary school years. This "success" may give 
them confidence in their mathematical ability; they tend to 
be free from "math anxiety." 

Second, there can be a variety of non-school mathe
matics, each relating to school mathematics in its own 
way. Not every maths routine that emerges in non-school 
settings can serve as a basis for understanding how and 
why the corresponding "school maths" routine works. I 
very much like the basic idea of Carraher et al. (1985): 
mathematics learning in daily life produces effective and 
meaningful procedures which can complement poten
tially richer and more powerful mathematical tools ac
quired in school at the expense of meaning. However, 
daily life math can in fact make school math meaningful 
only when semantically transparent. 

"Our lives are filled with procedures we carry out 
simply to get things done" (Hatano & Inagaki, 1986, p. 
266 ). Both adults and children perform at least some 
everyday problem-solving procedures only because they 

"work," without bothering with the meaning of each step. 
Subtraction using an abacus, like pressing a key of a 
calculator for finding the square root of a given number, 
can be considered as one of such procedures. After repeat
ing them hundreds of times, we can be quite skillful, i.e., 
we can become "routine experts." Despite this routine 
character, their component skills can be transferred to 
other procedures, since the actions of the specific condi
tion-action pairs constituting a component skill are trig
gered automatically whenever the conditions are met 
(Anderson, 1982). Thus practice in one set of skills may 
facilitate the acquisition and performance of others shar
ing some component skills. 

In short, the development of mathematical cognition 
can be conceptuali7.ed as a process of interaction of non
school and school math procedures. The nature of this 
interaction varies according to characteristics of the non
school procedures. To clarify the process, more research, 
particularly from a cross-cultural perspective, is needed. 

Note 

1This article is based on the paper presented at the symposium, 
•Mathematical concepts: learning and development in cross
cultural peBpective," 9th Biennial Meeting of the International 
Society for the Study of Behavioral Development, July, 1987, 
Tokyo. I would like to thank Peter Bryant, Terezinha Carraher 
and Ed Hutchins for their valuable comments on its earlier 
version. 
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Selling Candy: A Study of Cognition in 
Context 

Geoffrey B. Saxe 
University of California, Los Ange/es 

This paper is concerned with the way children's 
participation in cultural practices can influence their 
developing mathematical widerstandings. My focus is on 
the p-actice of street vending, an activity common for 
WISChooled children in developing cowitries. The vendors 
I will describe are 10- to 12-year-old boys who sell candy 
and are from poor urban areas in Brazil's Northeast. 

The study is guided by a basic assumption: children 
construct mathematical widerstandings in their efforts to 
achieve mathematical goals, goals that often emerge as an 
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interplay between their own prior widerstandings and the 
p-actices in which they participste (see Saxe, Guberman, 
& Gearhsrt, 1987 for an elaboration). This assumption 
leads to the view that analyses of children's widerstand
ings should be coordinated with and in part directed by 
socio-cultural analyses of the character of their practice
linked goals. In Table 1, I have sketched the structure of 
a two-part study with the candy sellers that follows from 
this view. On the left side of the table are basic questions 
I addressed, and on the right, the methods used. 

Table 1 

QUESTION 

I. How are children's everyday 
mathematical goals Influenced 
by participation in the candy 
selling practice? 

2(a) What are the characteris
tics of sellers' mathematics? 

2(b) Is sellers' mathematics 
influenced by participation in 
the candy selling practice? 

METHODS OF STUDY 

Observations of sellers 
conducting their practice 

(a) Interviews with sellen 
on mathematical tasks 

(b) Contrasts between the 
mathematical understand• 
ings of sellem and matched 
non~sellen 

My first concern represented in the table was to 
widerstand the form children's mathematical goals take in 
the candy selling practice. To answer this question, I . 
conducted a series of ethnographic studies of the p-actice 
focusing on social processes that influenced the form of 
sellers' mathematical goals. The second question indi
cated was to discover the characteristics of candy sellers' 
mathematics. To address the second question, I conducted 
interviews with individual children using practice-related 
mathematical problems and contrasted the understand
ings of sellers with those of both urban and rural nonsell
ers. By contrasting sellers with nonsellers, I was able to 
determine whether practice participation affected the kinds 
of mathematical widerstandings children developed (see 
Saxe, in press, for a complete presentation of these data). 
I am going to summarize briefly the results of both types 
of investigations, focusing first on the ethnographic stud
ies. 

Ethnographic Analyses of Mathematical Goals that 
Emerge in the Candy Selling Practice 

The sellers that were the target of study are entrepre
neurs. Their practice has a 4-phase cyclical structure and 
in each phase they are likely to form particular kinds of 

The Quarterly Newsletter of the Laborawry of Comparative Human Cognition, Jar,/Apr 1989, Volume 11, Numbers I& 2 19 



mathematical goals. During a purchase phase, a seller 
buys a wholesale box of candy containing from 30 to 100 
units from one of the many wholesale stores in a down
town urban center. During a prepare to sell pbasea seller 
nrust translate the wholesale price for the multi-unit box 
into a retail price for just single units of candy. During a 
sell phase, a seller must sell his goods to customers. 
Fmally, in a prepare to purchase phase, a seller must 
determine which of the many wholesale stores has the best 
price for the best box. While the basic cyclical structure 
provides a general context for mathematical goals to 
emerge, sellers' goals take form in and are thus influenced 
by a variety of social processes including macro-social 
processes like in.iation and micro-social processes spe
cific to the practice like retail pricing conventions and 
social interactions. 

Inflation 

Brazil has had a high inflation rate for many years
during the year of the study the inflation rate was about 
25%. As a consequence of inflation, the mathematical 
goals that sellers construct in the practice involve inflated 
or very large nwnerical values, and the tokens of currency 
for these numerical values continue to shift as prices rise. 
For instance, the wholesale prices for boxes of candy 
ranged from about Cr$3600 to Cr$12000 when the study 
began and four months later they ranged from Cr$6500 to 
Cr$20000. The inflated monetary system has also meant 
that the government issues new denominations of cur
rency frequently. Just before the study began, the govern
ment issued a 50000 bill-during the study, the govern
ment issued new coins in values of 0$200, and Cr$500, 
and issued a new bill of Cr$ I 00000, and, just after the 
study was completed, the government altered the currency 
system by eliminating three zeros from the cruzeiro, and 
calling the new unit the cruzado. This, because of the 
inflated currency, at all phases of the practice, sellers are 
dealing with very large numerical values as they generate 
arithmetical goals. 

Social processes specific to the practice. Within the 
four phases of the practice, two types of social processes 
enter into the emergence of mathematical goals-sellers' 
mathematical conventions and sellers' typical social in
teractions. 

Sellers' social conventions and their influence on 
sellers' mathematical goals. Over the history of the sell
ing practice, sellers have developed social conventions 
that facilitate the conduct of their practice. Some of these 
conventions affect the nature of the mathematical goals 
that emerge in the practice. For instance, sellers use a retail 

price ratio convention in which they offer their candy in 
the sell phase to customers for multiple units for a single 
bill denomination, such as three chocolate bars for one 
thousand cruzeiros (Cr$1000). The convention reduces 
the complexity of arithmetical problems that would emerge 
in the sell phase if units were sold for odd numerical 
values-values that would give rise to time consuming 
and complex problems involving adding and subtracting 
bills. In tum, these very conventions give rise to new goals 
involving ratio comparison-many sellers, particularly 
the older ones, offer their candy for more than one ratio, 
such as 2 bars for Cr$500 and 5 for Cr$ I 000, and in 
determining these ratios, sellers compare the relative 
profit gained. 

Sellers' social interactions and their influence on 
sellers' mathematical goals. At each phase of the prac
tice, sellers have transactions with other people and, like 
the practice-linked conventions, these social interactions 
often give rise to or lead to an alteration in the mathemati
cal goals of the practice. For instance, in the prepare to sell 
phase, sellers may negotiate with one another in price 
setting interactions to minimize local competition, inter
actions that may entail forming additional ratio compari
son goals. In the sell phase, sellers may bargain with 
customers resulting in renegotiation of the pricing ratios, 
renegotiations in which sellers may need to form, again, 
new arithmetical and ratio comparison goals. In the pur
chase phase, wholesale clerks may help simplify sellers' 
mathematical goals by telling children box prices so that 
they do not need to read large numerical values as well as 
help with the translation of wholesale prices into retail 
prices. 

Studies on Sellers' Mathematics 

So far I have attempted to show that as a part of 
practice participation, sellers construct three principal 
goals involving the representation of large numerical 
values, arithmetic with large numerical values, and ratio 
comparisons. Now, I am going to address the question of 
whether sellers' engagement with the candy selling prac
tice influences the character of their mathematical under
standings. To address this question, children with little or 
no schooling from three groups were interviewed on 
mathematical problems related to the practice. The groups 
included 10- to l2-year-0ld candy sellers, JO-to 12-year
old nonsellers from the same urban environment, and IO
to 12-year-old nonsellers from a rural community about 
JOO miles away from the urban community. All children 
were presented with problems involving the representa
tion of number, arithmetic, and ratio comparisons. 
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Expectations about children's performances were 
based on analyses of differences in the kinds of mathe
matical goals with which children are engaged in their 
everyday activities. Clrlldren from each of the three popu
lation groups engage in some commercial transactions in 
activities like nmning errands for their parents to grocery 
stores. This means that children from all groups are 
frequently faced with representing large values of cur
rency. However, nonsellers do not often engage with 
problems involving arithmetic with multiple bill values, 
and problems involving ratio comparisons are even fur
ther removed from the activities of the nonsellers, espe
cially the rural nonsellers. Because of these population 
group differences in the kinds of goals children structure 
in their everyday activities, I expected to find related 
differences in the character of children's mathematics. 

Representations of Large Numerical Values 

I used two types of tasks to assess children's ability to 
represent large numerical values in problem solving. In 
Standard Orthography tasks, children were required to 
read and compare multi-digit numerical values. As an 
alternative to the use of the standard orthography, I sus
pected that children might be using currency bills them
selves as a basis for number representation. To test this 
hypothesis, I constructed Alternative Representation tasks 
that consisted of a Standard Bills condition in which chil
dren had to identify the numerical values of bills that 
varied in value from Cr$ I 00 to Cr$ I 0,000; a Number Oc
cluded condition in which they had to identify the numeri
cal values of identical bills with the printed numbers on the 
bills covered with tape so the child could not attempt to 
read them; and a Nurrbers On/ycondition in which chil
dren had to identify copies of the printed number on the 
bills without the bills' figurative characteristics. If chil
dren were identifying bills on the basis of their figurative 
characteristics, then children should perform better on 
both the standard bills and number occluded conditions 
than on the numbers only condition. This is just what I 
found. For the Standard Bills and Numbers Occluded 
conditions, there were no group differences-children 
from each group performed at or near ceiling; however, 
for each group, children made significantly fewer correct 
identifications on the Numbers Only condition. These 
results then indicate that children across population groups 
had developed an ability to use bills themselves as signi
fiers for large values and did not need to rely on their 
imperfect knowledge of the standard number orthogra
phy. 

A counter interpretation of these findings is that 
perhaps children treat the values they use to identify bills 

as merely linguistic terms and do not order them as a 
numerical series. To evaluate children's knowledge of the 
numerical relations between currency values, children 
were presented with Currency Conparison tasks in which 
they were presented with pairs of bills and coins and asked 
to determine which was the greater value and then to 
determine how many of the lesser values was equivalent 
to the greater value (e.g., Cr$200 bill vs Cr$1000 bill). An 
analysis of children's responses to these currency com
parison tasks revealed that children across population 
groups correctly identified the larger of the two valued 
currency units with great regularity. Clrlldren's answers to 
questions about the numerical relations between currency 
units revealed that all groups achieved a near ceiling per
formance on this task. Thus, not only do children identify 
bills without reference to the standard orthography, they 
also know both ordinal and cardinal relations between 
currency values. 

Solutions to Multi-term Arithmetic Problems 

The second area targeted for study was arithmetic 
with large currency values, a problem type more exclu
sively linked to the everyday activities of the candy 
sellers. To assess arithmetical competence with large 
bills, I presented children with a variety of tasks-tasks 
like adding a stack of 12 currency bills to Cr$8600 or 
subtracting Cr$3800 from Cr$5000. Typical strategies on 
this task involved "regrouping bills" into convenient val
ues (Carraher, Carraher, & Schliemahn, 1985), strategies 
in which, for example, children would reorganize a series 
of bills to be added in an order in which they could add in 
multiples of 500 to 1000 cruzeiros. Unlike the Alternative 
Representation ~temtasks, children's performance var
ied across groups. Omsistent with expectation, the sellers 
more frequently solved these problems than did the non
sellers. 

Ratio Comparisons 

The third type of problem targeted for study involved 
ratio comparisons, problem types that were not at all 
common in rural nonsellers' everyday activities, more 
common in the urban nonsellers' activities (who were 
sometimes the customers of the sellers), and, as we have 
seen, very common in the candy sellers' activities. To 
assess children's ability to compare ratios, an interviewer 
presented children with problems in which the child had 
to determine in which of two pricing ratios a child would 
make a larger profit (e.g., selling I candy for Cr$200 vs. 
selling 3 candies for Cr$500). Clrlldren were then required 
to tell which ratio would yield the larger profit and to 
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explain their answers. Cllildren who achieved accurate 
ratio comparisons typically justified their answers by con
structing a common temi, a construction that entailed 
transforming the numerator or denominator of one or both 
ratios so that it was comparable to the other. As expected, 
children's solutions varied markedly across population 
groups: Sellers' typically identified the appropriate pric
ing ratio and provided appropriate justifications for their 
answers whereas few nonsellers (especially the rural 
nonsellers) provided such responses. 

Concluding Remark 

The findings of this study add to our understanding of 
the processes by which children's participation in cultural 
practices influence their developing understandings. 
Mathematical problems are generated as children partici
pate in cultural practices like candy selling. These prob
lems are linked both to more general socio-economic 
processes like inflation, conventions like pricing ratios 
that arise in practices, and patterns of social interaction. As 
children participate in practices, their goals become inter
woven with these social processes. In their efforts to 
achieve practice-related goals, children construct new 
understandings and solution strategies, new cognitive 
developments at once linked to their own constructive 
efforts and to social life. 
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A Content-Oriented Approach to Re
search on the Leaming of Mathematics 
and Natural Language 

Gerard Vergnaud 
C.N.R.S. Paris 

It is somewhat trivial to say that learning depends on 
the contents of knowledge to be learned. But many theo
ries of learning have tried to get rid of the contents, with 
the aim of reaching the stage of general theories. 1his is 
the case with many structural theories as well as with the 
associationistic theories. Beyond the fact that general 
theories fail to help teachers in understanding the difficul
ties met by students for specific concepts and specific 
competences, it is theoretically disputable that knowledge 
develops along the same kind of process for biology and 
history, physics and mathematics, or even the geometry of 
the triangle, and the geometry of space. 

I have two main arguments for this. Fll'St, empirical 
studies show, even in the limited domain of mathematics 
and physics, that the main difficulties met by students 
depend heavily on the contents of the situations to be 
mastered. Second, the search for general theories misses 
a very important epistemological point, namely that con

cepts and C011JJetences are solutions to specific problems 
that human beings have been faced with at one time or 
another. In other words, beyond the general consideration 
that knowledge always consists of concepts and compe
tences, based upon properties that can be expressed in the 
same natural language or the same symbolic shape (graphs, 
tables, equations, etc.) we must not miss the essential point 
that every piece of knowledge refers to situations to be 
mastered or problems to be solved. Consequently, a devel
opmental approach to knowledge and learning requires 
definitions that should enable us to deal with the situations 
for which a concept is meaningful. ff!, need a theory of 
reference that refers concepts to situations. To apply this 
idea immediately, instead of giving definitions right now, 
I will start with examples. 
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Additive and Multiplicative Structures 

An important pert of my research iwrk concerns the 
development, the learning, and the teaching of the four 
operations: addition, subtraction, multiplication, divi
sion (Vergnaud, 1981; 1983a; 1983b). But trying to 
understand the reasons why the complexity of so~led 
elementary-arithmetic problems is so varied, even when 
the arithmetical operation to be used is the same, has 
suggested to me the idea that the first step was to classify 
the situations in which one has to add, subtract, nmltiply 
or divide. This led to the definition of two conceptual 
fields: additive structures and nmltiplicative structures. 

By additive structures I mean the set of situations 
whose handling requires one addition or one subtraction, 
or a combination of such operations. By multiplicative 
structures I mean something similar for multiplication 
and division. Additive and multiplicative structures are 
not independent of each other, but for the time being it is 
better to consider them separately. These deimitions 
seem straightforward. But the outcome is not. The clas
sification of addition and subtraction problems, for in
stance, results in a wide variety of relationships whose 
analysis requires different concepts like the concepts of 
measure, of state and transformation, of order relation
ships, of combination measures, combination of trans
formations and combination of relationships, of natural 
number and directed number, of bina,y and unary opera
tion, of directed state, abscissa and algebraic value, and 
others. 

The reasoning (or relational calculus) that students 
have to make to imd the right arithmetical operation in 
each situation is so different that children usually fail to 
recognize that it is the same kind of problem, even when 
the arithmetic operation is the same. For instance: 

Example I: Susan has 8 dollars. She spends 3 dollars on 
cakes. How much does she have now? 

Fmd the final state. 

Example 2: Peter has just played a game of marbles. He 
has won 3 marbles and he has now 8 marbles. How many 
marbles did he have before playing? 

Fmd the initial state. 

Inverting the direct transformation into a subtraction is not 
an easy operation of thinking for 7- to 8-year-olds. It even 
conflicts with their primitive conception of subtraction as 
a decrease. 

Example 3: Robert has played two games of marbles. He 
lost 8 marbles in the second game, but he does not remem
ber the first game. When he counts his marbles in the end, 
he fmds 3 marbles less than what he had before playing the 
ilfSt game. What happened during the first game? 

Find the ilfSt transformation. 

There are two main difficulties in this case: you need 
reasoning without any information on the initial or final 
states; and you must subtract the whole loss from the 
second loss: the whole from the part, which is counter
intuitive. 

I will leave additive structures for awhile because I would 
like to pay more attention to multiplicative structures. 

Nearly all problems involving a multiplication, a division 
or a combination of such operations have to do with 
proportion: either a simple proportion between two vari
ables, or multiple proportion of one variable to two or more 
independent variables. 

Example 4: Eric wants to buy 4 miniature cars. They cost 
3 dollars each. How much will he have to pay? 

Can be analyzed in three different ways: 

(a) bina,y operation 4 x 3 -
which is fair enough if you have pure numbers in mind; but 
if you think of 4 cars and 3 dollars, you can't explain why 
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multiplying cars by dollars gives dollars and not cars. 
However, if you keep thinking of the proportion between 
quantities of cars and quantities of dollars, conceptual 
differences between possibilities can be demonstrated 
through these two diagrams. 

- binary operation 4 x 3 = □ 

(b) x4 appears as a scalar operator that applies to 3 dollars 
and gives dollars. 
x4 expresses the relationship between two quantities of 
the same kind (4 cars and I car). It can be expressed in 
natural language by "4 times more," which is purely 
scalar. 

(c) x3 appears as a function operator that applies to 4 cars 
and gives dollars; x3 consists of a quotient of quantities 
"dollars per car." It cannot be expressed in natural lan
gusge by "3 times more" and dimensional analysis can be 
used to show teachers (not children) the complete mean-
ing. 

I 3 
x3 

4 
x3 

Example S: 40 children go to a holiday camp. They will 
stay 21 days. The average consumption of sugar for I 0 
children 3.S kilograms per week. What quantity of sugar 
will they eat during their stay? 

I have represented in a table the double proportion of the 
consumption of sugar to the time and to the number of 
children and one of the possible solutions of the problem. 

""i 
2 

number 
of 

days 
7 

l 
21 

number of children x4 
12···············10··--40 

Consumption of Sugar 
x4 

--4 times more children and 3 times more days makes 12 
times more 

1bis solution lies on an essential property of the bilinear 
function: consumption of sugar as a function of the num
ber of children and the number of days. 

In the above example concerning prices of cars, the scalar 
procedure uses the isomorphic property of the linear ftmc
tion. 

f (AX) = A f (x) 
Price of 4 cars = 4 times the price of I car 

and the function procedure uses the constant coefficient 
property of the linear function. 

f(x) = ax 
Price of 4 cars = dollars per car x 4 cars. 

In contrast, the sugar consumption example involves a 
property of the bilinear function. 

The consumption of 4 times IO children during 3 times 7 
days is 12 times (4 x 3) the consumption of 10 children 
during 7 days. 

Of course students do not know explicitly these 
axioms and theorems of linearity but they do use them in 
solving problems. I call them "theorems in action," and 
can trace the use of theorems in action both in additive 
structures and multiplicative structures. There is a large 
variety of such theorems. Some of them are discovered or 
understood at an early stage in cognitive development (by 
3 or 4 years of age for some local properties of a:ldition and 
subtraction). Some are still difficult for most 16 or 17 year
olds and adults. If you can consider the different kinds of 
multiplication that I have just described, it is clear that the 
multiplication 4 x 3 = 12 cannot give account of the 
conceptual difficulty of the different problems presented. 

Contents of Knowledge and Natural Language 

I would like to raise now the problem of natural 
language. Language, especially in problem-solving, has 
two correlative functions: communication and represen
tatio11 The communication function raises the question: 
who speaks to whom? The representation function: what 
is the speaker talking about? Other questions concern the 
nature of the task and the circumstances. None of these 
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questions is independent of the others. Schneuwly and 
Bronc kart (1983) have made the distinction between 
"theoretical discourses" and "discourses in situation," by 
arguing that some discourses are independent of the situ
ations and do not contain the linguistic markers that refer 
to the hie et nunc situation: persons and objects, location, 
time, essentially. These markers such as pronouns and 
adverbs (he, this, here, before, now, after, etc.) are very 
frequently in "discourses in situation" and make some of 
them totally incomprehensible for persons who don't 
know the situation. This is the case when you listen to a 
tape, for instance. They also describe a third category of 
texts, narrative discourses, which describe the situation 
referred to. 

When you observe students solving problems or 
asking questions about a situation, it is most likely that 
their verbal productions will be of the "discourse in situ
ation" kind, although they may occasionally produce 
theoretical discourses (independent of the situation) and 
narrative discourses (referring to other situations). um
guage can be either a help in conceptualizing a situation or 
a help in learning and executing a sequence of actions, 
especially mental actions; it can also be both at the same 
time. This double function of language in problem-solv
ing is not specific of natural language, it is also the sort of 
assistance you can get from a diagram, a picture, a table, 
an equation or a graph. It is different to put a problem into 
equations or put it into words, and to manipulate algebraic 
symbols or reason with words; but the function of repre
sentation concerns both algebra and natural language. The 
"4 times more" expression that I have mentioned before 
can be used by a student when he explains how to find the 
solution to another student or to the teacher. I have also 
stressed that it represents a scalar relationship and not a 
function. I would like to take other examples to show how 
language can help controlling action and conceptualizing 
a new situation. 

The information given to Charlotte (2nd grade) is: 

"Veronique has bought 24 postcards. She has written to 
her friends. She now has 11 postcards left." 

No question is asked. Charlotte is supposed to formulate 
a question and then give the answer. She can use chips to 
solve the problem. 

Charlotte (Ch.) and Interviewer (Int.) 

Ch_: One could ask how many she used. (Ot. takes the 
tokens and says:) I'm going to take 24 - I, 2, 3 ... 24 

(counts quite loud) and that's 24. Then I'm going to 
save 11 now, I'll take 11, 5 and 6, that's ... that's 10 
already, now I'm missing one, and one more ... then 
there are 11 there, I'll check because I, 2, 3, 4 ... 10, 
11 (counting quite loud). Then I have 11 there, I'll 
write it down shows her notebook). I have now 
many left? 2, 4, 6, 8, 10, 12, 14 (groups the tokens 
in twos and counts quite loud). There are14. 

Int: Are you sure? 

Ch.: I, 2, 3, 4 ... 13 (counts again quite loud). Oh, 13. 

Int.: And what can you say? 

Ch.: These are the 13 postcards that she sent. 

One can notice that Charlotte asks the relevant questions 
without any hesitation. Then she uses the tokens to calcu
late. The control by language appears several times, in 
different ways: 

- she makes explicit what she is doing 
- she checks 
- she makes the first step of the procedure explicit 
- she writes it 
- and she counts again to find the result (her first 

answer having been wrong). 

The specific parameters of "enunciation" are visible: 

- prono1D1s: I, me (e.g., I'll take 11, I'm missing one) 
temporal and spatial deictics: now, there 

- designation operators: (that's 10 already). 

They are typical of "discourse in situation." 

The same information is given to Pascale (2nd grade). 

Pascale (Pase.:) Starts with an addition before formulat
ing any question. 

Finds 24 
+ 11 

35 

Int.: What are these 35? 
Pase.: That ... 24 plus 11, you can ... 
Int.: The 35, are these the ones she sent? 
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Pase.: No. 
Int.: Why? 
Pase.: Because 24, that was before and then 11 that's 

afterwards. 
Int.: Then, what do you have to do? 
Pase.: Well, I think that I have to take these tokens? and 

that I can .... (Pase. takes the tokens.) I'll take 24 
tokens. (He puts the tokens down counting up to 
24). 

Int.: And what are you going to do now? 
Pase.: I'll take the tokens up to 1 I. (He takes 11 tokens.) 
Int.: And now, what do you do? 
Pase.: And now I'll write that there were ... 
Int.: How many tokens did you take? 
Pase.: I took 24. 
Int.: And what did you do? 
Pase.: I took ... I took the tokens ... my 11 tokens and there 

I have left (counts whispering l, 2, ... 12) and there 
I have 12 left. 

Int.: I think that there is a small mistake. 
Pase.: (Counts again the two piles) 13. 
Int.: What can you say? What phrase can you make? 
Pase.: Perhaps that will be that she sent 13 and then she 

has 11 left. 
Int.: Do you think that this is the way? 
Pase.: Yes. 
Int.: Would you know how to write the operation? 
Pase.: I wouldn't know it. 

Pascale never formulates the question but uses both 
language and tokens to elaborate a correct representation 
of the problem and the solution. Her last sentence shows 
that her final representation is quite good. 

These protocols have been collected by Daniele 
Morange for her thesis. One of the important findings is 
that most children that can formulate the relevant question 
can also find the answer. The answer and the question 
seem to go together. 

Conclusion 

These considerations have led me to a comprehensive 
definition of what a concept consists of. It is a triplet of 
three sets: 

concept = (S, I, R ) 

S: the set of situations that make the ooncept meaningful 
I: the set of invariants (or theorems-in-action) that char

acterize the variety of competences of students. These 
invariants are properties of the concept. 

R: the set of symbolic representations that can be used to 
represent these properties and the situations. 

ht other words, I would call S the referent, I the signified
and the signifier. 

The core of cognition lies in the operational invari
ants that students gradually discover or appropriate. I call 
them theorems-in-action because, after all, they are theo
rems. But there is a large variety of them, much larger than 
what we have intended up to now. The variety of situations 
is still larger and the landscape is made more complex by 
the fact that not only does a concept refer to a variety of 
situations, but each single situation cannot usually be 
analyzed with only one concept. For multiplicative struc
tures for instance, we need the concepts of quantity, scalar, 
multiplication, division, linear and nonlinear function, di
mensional analysis, fraction, ratio, etc. Because a concept 
refers to a large set of situations and because there are a 
variety of invariants and a variety of symbolic expressions 
for these invariants, we need to study rather extensive 
conceptual fields. 

The concept of conceptual field aims at cutting out 
fair-sized objects for research on the development, the 
learning and the teaching of concepts and competences. It 
relies upon a content-oriented approach and not upon a 
logical, a linguistic or a structural approach. A reliable 
description of the development of knowledge in students' 
minds cannot avoid the contents of knowledge. 

A conceptual field consists, first of all, in a set of 
situations. We must classify them and analyze the rela
tionships that constitute the oore of each class of problems. 
We must experiment with them at different levels, under 
different conditions, for different values of the variables, 
and then try to understand the variety of procedures and 
behaviors of students. We must also experiment with 
different ways of representing them, analyze what is well 
represented in a certain symbolic system, and what is not, 
and then understand the \\Ords, pictures and symbols used 
by students. 

For instance, I have studied extensively the concept 
of number line as a representation of numbers and differ
ences, of dates and durations. The results show that the 
understanding and the use of the number line is also, like 
language, a big problem IQ be solved, which has a lot to do 
with the analysis of additive structures and the analysis of 
space. It is not mainly a problem of syntax, it is a ooncep
tual problem. The same is true for other symbolic systems 
like equations and diagrams, tables and graphs. 

Conceptions of students depend on situations they 
have met. Primitive conceptions of addition and subtrac-
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lion, multiplication and division, are shaped by the first 
situations mastered by students. 

But we must also analyze how students modify these 
initial conceptions, by facing new situations, identifying 
similarities and differences, widening the scope of the first 
operations and eventually rejecting erroneous concep
tions. During that process, which covers a very long 
period of time (over twelve years for additive and multi
plicative structures), there are many metaphoric proc
esses, and a few conceptual revolutions; also many miswt
dentandings. It is only a detailed description that can 
really enable teachers to interpret what students do and to 
fmd the explanations (also the questions and situations) 
that may help them. 

The meaning of knowledge is conveyed by practical 
and theoretical problems to be solved, provided they are 
real problems for students. This is of course a functional
ist's point of view. It bas probably some limits. But for the 
time being, it would be profitable, for research on educa
tion, to try to answer the following question: "to Khicb 
problem or problerm, does a new concept, a new property 
of a concept, a new procedure, a new representation or a 
new limnJ!ation bring a solution or eventually a better 
one?" 

This analysis cannot be done without a careful and 
profowtd analysis of the contents of knowledge. 
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The Social Constitution of the Mathemat
ics Province-A Microethnographical 
Study in Classroom Interaction 

JorgVoigt 
Institute of Mathematics Education (JDM) 
UnivcrsityofBt:ileft:ld, mst Germany 

The microethnographical study reported here exam
ines how mathematical meaning is routinely constituted in 
the social interaction between teacher and students. The 
study of the social nature and of the covert mode of these 
processes contributes to a better wtderstanding of the 
resistance of educational practice to every attempt of 
change. 

According to several quantitative studies the usual 
mathematics instruction in Germany usually appears in 
the form of frontal teaching (Hopf, 1980; with regard to 
international studies Hoetker & Ahl brand, 1969 ): the 
teacher asks a question to which he knows the valid 
answer, one student answers, the teacher evaluates this 
answer, and so forth. The third step, evaluation, bas a 
decisive role in constituting official meaning. The teacher 
does not simply give a lecture, but draws the students into 
active participation in the process of knowledge commu
nication; in this process, evaluation works in the selection 

of those statements from the students' contributions which 
shall (not) be considered as academic knowledge (Streeck 
& Sandwich, 1979 ). 

In this kind of classroom discourse one can wtcover 
concealed and stereotyped patterns and routines (Andelf
inger & Voigt, 1984; Bauersfeld, 1980, 1982, 1987; 
Bauersfeld & Voigt, I 986; Voigt, 1984a, b; 1985, 1986, 
1987). On the one hand, the pattems and routines facilitate 
the "smooth" functioning of the classroom discourse: on 
the other hand, they produce unintended effects on the stu
dents' learning. 

These analyses of concealed routines are based upon 
concepts from theoretical traditions as symbolic interac
tionism (Blumer, 1969; Goffman, 1959), ethnomethodol
ogy (Garfinkel, 1967; Mehan, 1979) and phenomenology 
(Schutz & lllckman, 1973 ), Common to these concepts is 
a certain constructivistic perspective (Mehan, 1981). 
Bauersfeld, Krummheuer & Voigt (1986a) have modified 
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the relevant concepts in order to deal with teaching and 
learning of particular subject. 

We use detailed descriptions and interpretations of 
video recorded classes to reconstruct patterns of interi,c
tion and routines. These lessons represent regular mathe
matics instruction in several forms. The records have been 
transcribed (Voigt, 1983). the differentiated modes of 
interpretation (Voigt, 1984a; Bauersfeld, Krummheuer & 
Voigt, 1986b) adhere to the standards of qualitative re
search (Erickson, 1986). 

The study of patterns and routines allows the inves
tigation of old problems in mathematics education from a 
new perspective. For example, in problem-solving situ
ations in the regular mathematics classroom the interac
tively constituted process of problem-solving differs from 
the ideal, individually produced process of problem-solv
ing. Typical patterns of interaction are in use (Voigt, 
1985). Neither teachers nor students are aware of these 
interaction patterns although they produce them routinely. 
There are also typical and hidden patterns in use when 
introducing concepts (Voigt, 1984a). ln this paper, we will 
describe a pattern of interaction typical of concept-intro
duction in mathematics teaching in Germany. This pattern 
has been reconstructed frequently in situations in which 
teachers attempt to call upon students' experiences as a 
starting point in the introduction of a mathematical con
cept. 

In order to illustrate this pattern and a few routines, a 
scene from a video-recorded mathematics lesson will be 
presented (section I) and interpreted (section 2). Then a 
more differentiated description of the pattern based upon 
some theoretical concepts will be given (section 3). Fi
nally, I will present some conclusions (section 4). 

A scene taken from a mathematics class 

Context of the scene. Fifth graders (aged 11 to 13) 
are having their first introduction to probability. The 
teacher wants to use the students' non-academic ideas as 
a starting point. The topic is a gambling-game. At first the 
teacher is aiming at the systematic study of observed 
frequencies over a number of runs, called the frequency 
approach. The teacher wants the students to play the game 
at a later point but he doesn't say so. (Later on he will aim 
at the approach of Laplace referring to the same game.) 

At the beginning of the lesson the teacher presents a 
box containing eight chips of various colors. In the box are 
five red, one yellow, and two green chips. The teacher 

calls the box an "um" and puts the conditions and rules of 
the game on the blackboard: 

Game: Take one chip out of the um with your eyes 
closed Note its color. Then put it beck into 
the um. 
Stake: 10 P!ennig (Pfennig = cent) 
Prize/Return: 20 Pfennig, if one takes the yel
low or a green chip. 

While the teacher is explaining the game, the students 
joke as if they intend to really play the game, placing bets 
and getting prizes. They display their cash. The transcript 
below begins at this point; the scene lasted three and a half 
minutes. 

Transa-ipt. This translation of a German transcript 
is a compromise between several aims: preserving the 
meanings, the structures of the spoken language, and 
using colloquial phrases and idioms (original transcript in 
Voigt, 1983; for the rules of transcription, see appendix). 

75 T: .!!2.Y!!, that's the game ( walks toward the stu-
dents, joining his bands 

76 what question could one ask about this 
game' 

77 S: hello 
78 S: where will the money come from ( Ss laugh) 
79 NS: let's grab. 
80 T: leave the money keep the money back. 
81 NS: what a pity 
82 T: we're going to do it differently with the money 
83 I don't want to pull your pocket-money out of 

your pants 
84 (walking arowid until line 114) 
85 Ss: oh,oh 
86 T: but what question, what question could you ask 

about this, about 
87 this game. (points to the blackboard) 
88 S: here 
89 T: Katrin. 
90 Ka: how many possibilities does one have then 

generally there .. so 
91 many chips can one ( .. ) 
92 T: could you raise your voice. I think that Ulf, 
93 he didn't understand you. 
94 Ka: how many possibilities does one have there ~ 

95 

96 
97 S: 

to win' .. of 
seven chips one can, of one draws three of them 
can get 
twenty P!ennig .. and the other four ( .. ) 
(loudly)five 
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98 S: three 
99 S: three to five 
100 Ma: the odds are seven to three 
101 T: yeah 
102 Ns: seven to three 
103 T: so you're already thinking about the number of 

the chips and 
104 S: eight 
105 T: going to, going to ask then the question, yes 

how many 
106 possibilities does one have actually, or how 

many does one have 
107 S: seventy to thirty 
108 T: generally of these here to win something. (m,,es 

the left band) 
109 yes, just easy .. still a more fundamental ques-

110 
111 St: 
112 T: 
113 St: 
114 T: 

lion, 
Stefanie. 
yes how large is the probability to win there. 

yes 
twenty pfennig 

or, or who does win generally 
(stand 

115 still) 
116 Ns: probably 
117 T: playing this game. 
118 Ns: (..) pay for the stake. 
119 T: who does win generally' 
120 Nss: (trouble) there he, at all generally get (. .. ) 
121 T: therefore the question, does the player win or 

does the 
122 gambling-bank win. which has e set up this 

game' (m-ites the 
123 question on the blackboard.) 
124 Nss: the bank, game, generally the bank wins 
125 T: !!!UY, how can one check whether the player or 

the 
126 bank wins' (5 sec) Andreas. 
127 Ad: generally the bank wins. that's the same as with 

the 
128 

129 

130 
131 
132 T: 

133 

134 Ss: 
135 S: 

lottery tickets draw one of them you';re buying 
ten pieces, 
really. about five of them .. generally .. are 
blanks and for 
the rest then you get small prizes. 
(T rests his chin in his hand) 
yeah that's right. but let's assume we're betting 
here instead 
of twenty pfenning ten Mark (points to the 
blackboard) (Mark =dollar) 
(loud) oh, oh, oh 
(Tis listening with thoughtful expression) that 

is a heavy 
136 loss namely if, not so many people come there 

only a few and 
137 each of them gets then always ten Mark and so 

on - ( .. ) 
138 T: therefore one can state, that then with certainty 
139 the bank looses and the player wins .. here, the 

140 
141 
142 
143 Ss: 
144 T: 
145 
146 

147 
148 S: 
149 T: 
150 La: 
151 Ns: 
152 T: 
153 
154 

155 

156 

158 Ss: 

159 S: 
160 S: 
161 T: 
162 S: 
163: T: 

164 

165 
166 S: 
167 T: 

prize 
isn't thst high, but it's only twenty pfennig. 
only in quotation marks, it is also something, 
twenty pfennig, 
umm,umm 

and .. the question is still open. 
does the player' win how could one check it out 
if the player really wins or if possibly as An-
dreas 
assumes, the bank, the bank always wins. 
always not 
Lars. 
I think that the bank is more likely to win 
more likely 
this isn't working .. okay you can make guesses 
(rejecting m1ve of his hand) will the bank win 
(m1lks around, Ss laugh)who is for the bank or 
who does think 
that the bank will win this game' (several Ss 
raise their 
hands) .. who does think that the player, has a 
chance at this game, and wins' 
(many-voiced and loud) a chance (som, Ss 
raise their hands) 
(loud) a chance he has got. 
(laughing) but only a small 
yes' 
here 
who does think, well, I'll say it in another way, 
who does 
think that the player will win' .. (fe...,,-Ss raise 
their hands) 
there are some too. well .. 
Sir 
okay we can, okay we can discuss it ((ausdiskuti 
eren)) 

168 but we can also' 
169 Ss: try ((probieren)) 
170 Ma: try it. ((ausprobieren)) 
171 T: yes. what can we do ( .. ) 
172 S: yes of ten times 
173 T: yes easily trv it 
174 S: yes of ten times how many times the player will 

win 
175 Ma: but generally will be red 
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176 NS: I don't understand 
177 T: yes, so it's about to play the game (Ss Jaugb)and 

to try it. 
178 (lilt the urn up)we will do it as follows •.. there 

come 
179 now five (finger at his ,mutb, Ss laugh loudly) 

there come 
180 five .. students to me, a fairy of fortune we 

need. (Ss 
181 raise their hands) a fairy of fortune 
182 NS: Jens the fairy 

Interpretation of a Sequence 

The following interpretation is focused on a short 
sequence of the scene. The extensive scene gives the 
necessary context for the interpretation of the actions of 
the sequence: At the beginning in line 76 the teacher opens 
with an ambiguous question: "What question could one 
ask about his game." Obviously the teacher wants to hear 
that the students wonder whether the player or the gam
bling-bank will win, like in everyday life. But at first the 
students are not guided by everyday ideas. Rather their 
answers are guided by an assumed relevance to the mathe
matics lesson, as for example line I 00: "the odds are seven 
to three" or line 101: "how large is the probabilityto win 
there." These answers go farther than the teacher wanted. 
Fmally the teacher himself gives the answer he expected: 
"who does H-in" (line 114). 

In line 125 the teacher asks a second key question: 
"how can one check whether the player or the bank wins." 
The teacher wants the game to be done repeatedly accord
ing to the frequency approach, i.e., after playing the game 
several times, the relative proportion of the summarized 
returns to the summarized stakes would be taken as the 
probability of winning without respect to the distribution 
of chips in the urn. 

This turn of the sequence and the next ones will be 
interpreted more exactly: 

• In the first turn (line 114-126) the teacher attempts to 
activate the students' non-academic ideas as a starting 
point. He asks an open question hoping to elicit the 
students' everyday ideas. 

• In the second turn (127-131) a student refers to his own 
subjective experiences from everyday life. The student 
Andreas refers to the context of a lottery. Andreas men
tions a worldly wisdom: the bank profits always. Andreas 
values the outcomes of the game as "blanks" and "small 

prizes." Both are negligible quantities for him. He doesn't 
aim at stating the proportions of gains but evaluates the 
outcomes under the perspective of the gambler. Neverthe
less the teacher doesn't want this idea. 

. In the third tum (132-133) the teacher rejects the 
students' everyday ideas. He modifies the topic, by tem
porarily modifying the level of the possible winning (not 
20 pfennig but 10 Mark). He modifies the topic in such a 
way that on one hand the everyday context is maintained 
at the surf ace and on the other hand the everyday context 
has to be transgressed in order to solve the problem. Under 
the teacher's perspective the structure of the game is not 
changed while Andreas' arguments become invalid. 

These three turns form a pattern of interaction which 
shall be called "pattern of the staged everjdayreference" 
or in short "staging pattern." The teacher starts a topic 
using an embodiment which elicits the students' subjec. 
tive everyday experience. The everyday reference is staged 
in the sense that it is elicited and is immediately rejected. 
Prospects and orientations of the students' everyday 
experiences (here of a lottery) are not taken up by the 
teacher. The teacher cuts these experiences from the 
official constitution of the theme. 

This staging pattern has been reconstructed in the 
lessons of different teachers frequently. It appears in 
situations in which the teachers attempt to activate the 
students' experiences as a starting-point, especially by 
means of embodiments (Voigt, 1984a). 

Theoretical Background 

Now I should like to take a closer look at the staging 
pattern by means of some theoretical concepts. These 
concepts were developed to understand discourse proc• 
esses. These processes have a dynamic force of their own 
often departing from the teacher's intention. 

How the dynamics of interaction form a pattern can 
be described by means of the concept of "illf'licit obliga
tions. " For example, in everyday greetings: the person 
who greets expects to be greeted in return, and the person 
greeted fulfills the implicit obligation to return the greet• 
ing. Such implicit obligations can be reconstructed in 
classroom interaction, too. Related to the staging pattern 
in our scene I reconstruct the following obligations: 

• Because of the teacher's ambiguous, open question the 
students are under the obligation to express everyday 
ideas. For example it is improper for students to treat the 

30 The Quarterly Newsletter of the lAboratoryofComparalive Human Cognition, Jan/Apr 1989, Volume 11. Numbers I & 2 



teachers questions as unclear or ask the teacher about his 
expectation with respect to the answer. Showing non
W1derstanding in the classroom would be self-cliscrimi
nating for the student. In our scene the student Andreas 
meets the obligation, but his answer doesn't correspond to 
the teacher's hidden expectation of the answer. 

- 1he teacher feels himself Wider the obligation to accept 
Andreas' answer, on one hand, and to cany out the game, 
on the other hand, in order to attain the frequency ap
proach. 1be teacher can neither say that Andreas' answer 
is wrong nor does he want to enter into Andreas' argu
ments. So he modifies a condition of the game spontane
ously, a marginal condition as he thinks. 

- Now the students feel themselves Wider the obligation 
to accept the teacher's modification. The students express 
their surprise in line 134, however in line 135 one student 
takes up the modification. 

By such implicit obligations a pattern of interaction 
develops. The obligations can be considered partly with 
regard to the institution of school. For example, in other 
cases when the students began to modify the topic, the 
teacher used his authority to reject the students' modifica
tions. 

Also the students play their part. They know that the 
teacher will evaluate their answers. This expectation pre
vents them from insisting on their own conception al
though their conception is valid under other circum
stances-like the worldly wisdom displayed in our ex
ample. Thus, teacher and students stage the illusion of a 
liberal instruction based on arguments. 

1be smooth fW1ctioning of the classroom discourse 
succeeds due.to the staging pattern in spite of the differ
ences in perspectives of teacher and students. As a pre
requisite for mutual W1derstanding a process of negotia
tion of meaning takes place (Cobb, 1988; Krummheuer, 
1982, 1983a, b). 1be provisional willingness to cooperate 
can be-described by Erving Goffman'• concept of "work
ing consensus" (1959) and Gotz Krummheuer's concept 
of "working interim" (1983a, see also "contract didac
tique," Brousseau, 1984 ). The working consensus is an 
implicit agreement. For example, our teacher evaluates 
Andreas' answer as virtually correct though it differs from 
his own objectives. In line 132 the teacher says: "yeah 
that's right, but .... "1be students treat their own offers as 
tentative, that is, they do not need to take full responsibil
ity. lbeir tentative verbal actions are based on their trust 
that their answers and the teacher's questio~s will be 

subsequently clarified. By this working consensus the 
teacher quickly realizes his objectives while seemingly 
taking the everyday experiences as a starting-point. 

As I spoke of obligations, of institutional pressure, 
and of the working consensus I didn't think of mathemat
ics instruction as a rigidly stabilized or pre-stabilized 
enterprise. No teacher is safe from the students' creativity. 
But recurrent patterns of interaction can be reconstructed. 
lbese regularities can be explained by "routines" of the 
teacher and students. So the teacher and the students do not 
need to feel the obligations as compulsions or to feel the 
working consensus as a contract. Here I refer to Alfred 
Schutz and l.uckmann's (1973) concept of routine and its 
use in ethnomethodological studies. A pattern of interac
tion is interactively produced tum-by-turn by means of 
everyday school routines. 

1be routines have interactive functions: for example, 
the students' routine of verbal reduction, that is the restric
tion of utterances to numbers and catchwords, enables the 
teacher to identify in the students' utterances the meaning 
which he expects, and vice versa. The routines of the 
teacher and of the students reduce the complexity of 
classroom discourse. 1be routines relieve the acting per
son and make the actions mutually reliable for the partici
pants. In this sense routines are necessary (Bromme & 
Brophy, 1986). 

However, one can investigate the (potential) disad
vantages of certain routines (Voigt, 1986): In the de
scribed staging pattern the teacher uses the rhetorical trick 
of modifying conditions of a topic in order to reject 
students' arguments. 

By means of this routine our teacher copes with one 
problem On the one hand, he wants to use the students' 
everyday experiences as a starting-point, on the other 
hand, he aims at a certain introduction to probability. The 
teacher does not need to be aware of the tension between 
the students' subjective ideas and the teacher's own 
demands, especially in case he regards mathematics team
ing as a direct abstraction of everyday ideas. I reconstruct 
the teacher's actions in such a way that he wants to hear 
certain everyday ideas which he will take as a starting
point. In this sense the everyday reference is staged. 

However, the students are not confronted with the 
mathematical model directly. They come to know that 
they are expected to express their ideas and they come to 
know that the teacher doesn't take their ideas seriously. 
Oassroom interaction of the type of the staging patterns 
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nms the risk that the student copes with this conflict by 
understanding mathematics as a strange, non-evident, 
irrational subject matter. This problem returns several 
times within the next lessons of this class. The students 
argue in similar situations like Andreas, and the teacher 
rejects their arguments until the game obtains a very odd 
character. While the teacher thinks that he uses the stu
dents' experiences as a starting-point, the students distin
guish between everyday gambling games and the specific 
gambling games in mathematics lessons. The working 
consensus indurates. 

Thus one can identify a gap in our scene, a gap 
between the teacher's intentions and his routines. He aims 
at a constructive connection between the relevant every
day experiences and the mathematical model. His routines 
lead him to a direct approach to mathematics and a cutting 
off of everyday experiences. 

At the end of the scene the teacher achieves his 
objectives by using routines once again. In line 154 one 
can reconstruct the routine of the "tactical poll" and in line 
167 one can reconstruct the routine of the "suggestive 
hint." The teacher makes the students say that the game 
should be tried-thus, achieving his objectives step by 
step. In doing so he might still believe that the students 
express and follow their own ideas. 

Conclusions 

Surely it is possible to criticize several teacher's 
actions in our scene and to construct better ones. The 
teachers themselves can do it "1ten confronted with the 
transcript of their own classes. For example, one may ssy: 
The teacher's embodiment doesn't fit the frequency ap
proach. Or: The teacher has to employ meta-<:<>mmunica
tion in order to promote an explicit translation from the 
embodiment to the mathematical model. When contrast
ing the value of "20 Pfennig" as a small prize in everyday 
experience with the fact that the return is nevertheless 
twice the stake in the mathematical model the teacher 
himself gives the hint for this translation (line 139). But I 
am not out to criticize. 

When replaying the video tapes and reading the 
transcripts together, the observed teachers again and again 
expressed their surprise about "1lat was going on in the 
microprocesses. They did not realize the routines and the 
unintended effects. The routines are not only a problem of 
experienced teachers; they have been reconstructed also 
in the very first mathematics lessons given by beginners. 
Moreover, the staging pattern and actions like suggestive 

hints etc., have been reconstructed in Plato's dialogue 
"The Meno" between Socrates and the slave, in the oldest 
"document" of mathematical instruction (Struve & Voigt, 
1988). It seems that the patterns of interaction and the 
routines are elements of a classroom culture which is 
reproduced by concealed socialization. For instance, the 
teacher's routines can be formed early by internalization 
of the student's role. This may be one of the reasons for 
innovations in teaching to work only in long-term basis. 

In the context of teacher training it can be helpful to 
develop the teacher's awareness of the functioning of the 
microprocesses taking place in the mathematics class
room. The analyses of patterns and routines may contrib
ute to the teacher's reflection. The reflection on "1lat has 
been taken for granted can serve as a preparation for new 
approaches for teachers. 

Appendix 

Rules of transcription: 
T Teacher 
S student 
Ss 
NA 
Ka 
Ma 
St 
Ad 
La 
A: but then 
B: why is 

students 
A in private communication 
Katrin 
Marc 
Stefanie 
Andreas 
Lars 

} A and B speak partly at the ssme time 

l 
A: but then } B interrupts A 
B: why isl 

(4 sec) 

fX!C! 
(>mispering) 

very short pause (max. I sec.) 
short pause (max. 2 sec.) 
medium pause (max. 3 sec.) 
long pause 
lowering the voice 
raising the voice 
maintaining the pitch 
emphasizing 
drawling 

(m,.Jking around) manner of speaking, etc. 
( ... ) inarticulate utterance 
(two?) inarticulate, but probable utterance 

References 

Andelfin&er, B .. Voigt, J. (1984). Der Alltag des Mathematilrun
terrichts und die Ausbildung von Referendaren. Occasional 
paper 51. Bielefeld: IDM 

32 The Quarterly Newsletter of the Laborall>ryofComparative Human Cognition, Jan/Apr 1989, Volume 11, Numbers I & 2 



Bauersfeld, H. (1980). Hidden dimensions in the so-called 
reality of a methematics classroom. Educati.onal Studies in 
Mathematic,, 11, 23-41. 

Bauersfeld, J. (1982). Analysen zur Kommunikation im Mathe
matilrunterrlcht In H. Bauersfeld et al., Anal~n zum Unrer
richtslumdeln. Koln: Aulis. 

Bauersfeld, H. (1987). Interaction, construction, and knowl
edge-alternative perspectives for mathematics education. In T. 
Cooney, & D. Grouws (&ls.), Effective mathematics teaching. 
NCTM, Roston, Viiginia. 

Bauersfeld, H., Krummheuer, G., & Voigt, J. (1986a). lnterac
tional themy of learning and teaching mathematics and related 
microethnographical studies. In H. G. Steiner (Ed.), Proceed
ings ofTME. Blelfeld. 

Bauersfeld, H .. Krummheuer, G., & Voigt, J. (1986b). ln
teraktionsanalyse von Mathematikunterricht-Methcxlologis
che Annahmen und methodisches Verfahren. Unpublished Paper. 
Beilefeld: IDM. 

Bauersfeld, H., & Voigt J. (1986). Den Schuler abholen, wo er 
steht! lnszenierung oder Verwirklichung eines didaktischen 
Prinzips? In Jahresheft IV: • I.emen-Ereignis und Routine,• 
pp. 18-20. Velber: Friedrich Verlag. 

Bhnner, H. (1969). Symbolic interactionism: Perspective and 
method Englewood Cliffs: Prentice-Hall. 

Bromme, R., & Brophy, J. (1986). Teachers' cognitive activi
ties. In B. Christiansen, G. Howson, & M. Otte (&ls.), Perspec
tives on mathematics education, pp. 99-140. Dordrecht: Reidel. 

Brousseau, G. (1984). The crucial role of the didactical contrnct 
in the analysis and construction of situations In teaching and 
learning mathematics. In H. G. Steiner, et al., Theory of mathe
matics education. Occasional Paper 54, pp. 110-119. Bielefeld: 
IDM. 

Cobb, P. (1988). The tension between theories of learning and 
instruction in mathematics education. Educational Psycholo
gis~ 23(2), 87-103. 

Erickson, F. ( 1986). Qualitative methods in research of teaching. 
In M. C. Wittrock (Ed.), Handbook of research on teaching, pp. 
119-116. Third edition. New York: Macmillan. 

Garfinkel, H. ( 1967). Stvdies in ethnomethodology. New Jersey: 
Prentice-Hall. 

Goffman, E. (1959). The presentation of self in everyday life. 
New York: Doubleday. 

Hoetker, J., & Ahibrand, W. P. (1969). The persistence of the 
recitation. American Educational Research Jour11J1l, 6, 145-
167. 

Hopf, D. (1980). Mathematilamterricht. Eine empiriscbe Unrer
suchung zur Didaktik und Unterrichtsmethode in der 7. Klasse 
des Gymnasiums. Stuttgart: Klett-Cotta. 

Krummheuer, G. (1982). Rahmenanalyse zum Unterrlcht einer 
achten Klasse uber "termumformungen. • In H. Bauersfeld et al., 
Anal.)5en zum Unterrichtshandeln (pp. 41-103). Koln: Aulis. 

Krummheuer, G. (1983a). Das Arbeitsinterim im Mathema
tikunterricht. In H. Bauersfeld, et al., Lemen und l..ehren mn 
Mathematik(pp. 57-106) 

Krummheuer, G. (1983b). Algebralsche Termumformungen in 
der Sekundarstufe 1-Abschiubbericht eines Forschungspro
jekts. Materialien und Studien Band 31. Bielefeld: IDM. 

Mehan, H. (1979). I.earning lessons. Cambridge, MA: Harvard 
University Press. 

Mehan, H. (1981). Social constructivism in psychology and 
sociology. The Quar:terly Newsletter of the Laboratory of 
Comparative Human Cognition. 3(4), 71-74. 

Schutz, A., & Luckmann, T. (1973). The structures of the life
worlds. Evanston, IL: Northwestern University. 

Streeck, J., & Sandwich, L. (1979). Good foryou.-Zur pragma
tischen und konversationellen Analyse von Bewertungen im in
stitutionellen Diskurs der Schute. In J. Dittmann (Ed.), Arbeiten 
zur Konversationsanal.)5e (pp. 235-257). Tubingen: Niemeyer. 

Struve, R., & Voigt, J. (1988). Die Untenichtsszene im Memon
Dialog-Analyse und Kritik auf dem Hintergrund von In
teraktiomanalysen des heutigen MathematikWlterrichts. Jour
nal /ur Mathematikdidaktik. 

Voig~ J. (Ed.). (1983). Mathematikunterrlcht im 5. bix 11. 
Schuljahr-Transkripte zum Projekt "Routinen im Mathema
tikunterricht." Materialinen und Studien Band 33. Bielefeld: 
IDM. 

Voigt, J. (1984a). lnterkationsmuster und Routinen im Mathe
matikunterricht-Theoretische Grundlagen und mikroethnogra
phische Falluntersuchungen Weinheim: Beltz. 

Voigt, J. (1984b). Der kurztaktige, fragend-entwickelnde Mathe
matikunterricht-Szenen und Analysen. Mathematica Didac
tics, 3/4. 161-186. 

Voigt, J. (1985). Pattern und routines in classroom interaction. 
Recbershes en Didactique des Mathematiques, 6, 69-118. 

Voigt, J. (1986). Sozial-interaktiv Beclingungen der Entwick
lung mathernatischer Fahigkeiten irn gegenwartigen Mathema
tikunterrlcht. In H. G. Steiner (Ed.), Gru.ndfragen der Entwick
Jung mathematischer Fahigkeiten. Koln: Aulis. 

The Quarterly Newsletter of the uboratory of Comparative Human Cognitioa, Jan/Apr 1989, Volume 11, Numbers l& 2 33 



Voig~ J. (1987). An interactional approach to learning and 
teaching mathematics. Paper pn,sented at the Research Preses
sion of the Annual Meeting of the National Council of Teachers 
of Mathematics. Anaheim, CA. 

Unevenness in Mathematical and 
Cognitive Development:A Discussion 
of the Five Papers 

P.E_ Bryant 
Oxford University 

While reading the five papers in this fine collection I 
was s1ruck by the possible connections to be made be
tween our current knowledge about children's informal 
mathematics and our current dilemmas with work on 
cognitive development. The thought that occurred to me 
was not so much that theories about children's cognitive 
growth can be used to help us understand the development 
of their mathematical skills: that, after all, is a connection 
which has been tried many times already. My idea took the 
reverse direction. It occurred to me instead that recent 
research on children's mathematics might well provide 
the answer to several difficult questions about cognitive 
development. The research is so interesting and its results 
so convincing that it may well have implications far 
beyond the issue of how children learn arithmetic, algebra 
and geometry. 

To make this point I shall start with an extremely brief 
description of the current state of work on cognitive 
development. That work has been remarkably successful 
on the whole, but it has also provoked some stubborn 
problems. The modem history of the subject can traced 
back to demonstrations by several people, including Binet 
and Piaget (1952) that there are striking changes in chil
dren's intellectual skills as they grew older, and that the 
most surprising thing about these changes was the number 
of achievements which adults take for granted but which 
seem to be out of the range of quite normal children. To list 
all these apparently missing skills would take a long time 
and it would anyway be an unnecessary task, for they are 
well known. Piaget in particular based much of his work 
and his theoretical ideas around them. 

His conservation task, the results of which led him to 
claim that children younger than seven years or so do not 
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on the whole understand the principle of invariance, and 
his transitive inference problems, in which children ap
parently fail to conclude that A>C from the information 
that A>B and B>C, are probably the best known ex
amples. In both cases young children apparently lack an 
understanding which is a basic and unquestioned part of 
an adult's intellectual repertoire. 

If such claims are true then it only remains to work out 
how children eventually acquire the basic skills which 
they are said to lack while they grow older. In the rela
tively brief history of developmental psychology, the 
main candidates offered for this causal role have been 
Vygotsky's idea about the role of language and the zone 
of proximal development on the one hand (Cole, 1985; 
Vygotsky, 1962, 1978), and Piaget's equilibration theory 
on the other. A description of those two formidable causal 
hypotheses is beyond the scope of this brief commentary. 
The only point that I want to make about them here is that 
the main purpose of both is to explain how children 
acquire skills de novo-skills, that is, which they com
pletely lack at first but which come to them as they grow 
older. 

This concern with the acquisition of entirely new 
intellectual skills dominated developmental psychology 
for a long time, but there is now a new interest which is at 
least as widespread as the first This arises from the 
growing evidence that the traditional picture of skills at 
first not being there, so to speak, and then arriving later on 
in childhood can be very misleading. It is now quite clear 
that young children can manage many of the achievements 
which were thought to be impossible for them, but that 
they can only manage them at some times but not at others 
and in some circumstances but not in others. 

Conservation tasks and transitive inference problems 
happen to be good examples. Oiildren who fail the tradi
tional conservation task (Piaget, 1954) often succeed 
when given other closely similar problems which also 
seem to test their understanding of the invariance prin
ciple. 

In my view the best illustration of this unevenness is 
the demonstration that many children who would nor
mally fail the usual test which involves two questions (one 
before, the other after, the transformation) succeed when 
they are only asked one question (Rose and Blank, 1974). 
If they are shown two identical rows of objects but are 
asked nothing about them and then after one of the rows 
has been spread out, they are asked for the first time to 
compare it with the other one, they are often able to judge 
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that the rows have equal numbers: they do so much more 
than if they were asked to make the comparison twice, 
once before and once after the transfonnation. 

One can say much the same about transitive infer
ences. Measurement for example is based on transitive 
inferences, and it was thought for a long time that young 
children were incapable of using an intervening measure 
to compare nm quantities: they tended instead to resort to 
direct comparisons between the nm quantities in question 
without using a measure (Piaget, Inhelder and Szeminska, 
1960). Now however it is known that young children do 
often use measures if a direct comparison between the 
quantities in question is impossible (Bryant and 
Kopytynska, 1976). 

1he importance of these nm examples is that children 
seem to manage to use the principle of invariance or the 
principle of measurement in some contexts but not in 
others. Such data are obviously important, but they raise 
difficult questions. One has to tzy to explain why children, 
who apparently have a certain ability, decide to apply it to 
one situation but not to the other. Good explanations of 
this sort of unevenness in a particular task have been hard 
enough to find. General explanations of the same phe
nomenon over several different types of task pose an even 
more serious problem. Attempts at such hypotheses tend 
to be too general to produce specific and testable predic
tions. Hypotheses about 'access' seem like this to me. 
Orlldren are said to have access to a particular strategy 
when they use it, and not when they don't. The idea itself 
does not tell one why one context is more suitable than the 
other. 

What is the relevance of these questions to mathe
matical ilevelopment in general and specifically to the five 
pspers in this issue? 1he most obvious starting point for 
the connection that I am making is the fact that work on 
children's mathematical skills also reveals striking un
evenness in the way children deploy their skills. One 
absolutely firm conclusion to be drawn from recent re
search on the way in which children learn about mathe
matical operations is that there is a great deal more to it 
than simply learning what these operations are. Oiildren 
have to learn how to add, multiply and so on, but they also 
have to learn when it is appropriate to do so. There is now 
a great deal of evidence that this second kind of learning 
often causes children a lot of difficulty. 

1he evidence for this is the unevenness which char
acterizes their decisions about when to apply particular 
mathematical operations. Orlldren who add and subtract 

perfectly well when answering some problems neverthe
less frequently fail to resort to these same operations when 
given other equally appropriate problems (Bryant, 1985; 
Fuson, 1988). 

To make this point is simply to say that things are 
much the same in the field of mathematical skills as they 
are in other branches of cognitive development. However, 
it seems to me that the papers in this issue not only reflect 
the familiar distinction between having a skill and know
ing when to use it; they also give us a clearer idea about the 
nature of this distinction. I want to argue that they tell us 
more about nm vital questions-which are, ( I) why there 
is a gap between having a skill and being able to use if 
appropriately, and (2) how the gap is eventually narrowed 
and even sometimes closed. 

Vergnaud's paper starts with a statement, and soon 
follows with an example, about the inherent unevenness 
that characterizes the way children apply mathematical 
strategies that they have learned and the possible reasons 
for it. His opening arguments--that the biggest difficul
ties in mathematics are caused by the contents of the 
problems and that people learn mathematical concepts in 
order to solve specific problems-add up to a reminder 
that the content of a problem and its context are as likely 
to determine whether it is solved by a child as the actual 
mathematical skills that he or she possesses. His simple 
demonstration that children who can perfectly well use 
subtraction to solve a problem about a final state (Susan 
has $8 and spends $3 on cakes. How much money has she 
left?) nevertheless fail to subtract when given an equiva
lent problem about a beginning state (Peter has won 3 
marbles and now, has 8. How many did he start with?) is 
arresting. What is going on here? It seems likely that in the 
second, evidently much more difficult, problem the verbal 
context is the barrier (Carraher and Bryant, 1987). To be 
told that a boy has 'won' some marbles is to be put into a 
context that is naturally associated with addition, since 
winning something means adding it to one's possessions, 
just as spending money (the first example) typically means 
subtracting it from one's wealth. So the semantic context 
probably encourages subtraction in the first example and 
discourages it in the second. 

There is a deeper point to be made about this impor
tant demonstration. If my argument about the semantic 
context is correct, the children who find the second prob
lem much harder than the first are strongly affected by the 
nature of the actions involved. If spending means subtrac
tion and winning means addition to them, then they 
probably think most clearly about these operations in 
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terms of particular actions. Thus it might be that the 
wievenness that I have been discussing is, at least partly, 
caused by the kind of model that children adopt If the 
model is in term. of actions, mention of some actions will 
lead to the appropriate strategy and of others to the 
inappropriate one. 

Of course this explanation does not solve the problem 
of how to help children to apply their mathematical 
knowledge appropriately, and the problem is a grave 
problem, as the papers by Carraher and Meira and by 
Voigt show in different ways. Carraher and Meira deal 
with a controversial topic-the use of LOGO as a way of 
teaching children about mathematics and particularly about 
geometry. One of the main claims for LOGO is that it 
makes it possible for children to think about geometrical 
properties in general and about angles in particular in 
terms of their (the children's) own actions. The children 
have to trace lines by making a 'turtle' move around a 
screen, and the idea is that they can relate the turtle's 
movements to their own and thus form a better under
standing of the geometry (angles, distances) involved in 
the instructions that they have to give to the turtle. Given 
what I have just said about the importance of actions in 
children's models of mathematics, the claim for LOGO is 
a particularly exciting one. Carraher and Meira's work, 
however, suggests that the claim is questionable. They 
point out that it simply cannot be taken for granted that 
children will make or even understand the analogy be
tween the turtle's movements and their own. Moreover 
Carraher and Meira' s data also show that many adoles
cents have very great difficulty in understanding the 
turtle's actions and in expressing these in term. either of 
the turtle's movements in space or of their own. Here is a 
definite failure to make a coMection which several educa
tors assume will be transparently easy for young children, 
but we can wonder whether it is to be put down to the 
children's inability to make coMections in general or 
whether this psrticular COMection is an especially hard 
one to make. The turtle's movements are expressed in 
terms of movements in particular directions and turns of 
particular angles (e.g. left 45 degrees, forward 100) from 
the point where the turtle happens to be when the instruc
tion is issued, but it seems unlikely to me that children ever 
think of their own movements in space in terms remotely 
like this. Children moving in space will, presumably, be 
thinking explicitly in terms of their absolute destination, 
and it seems likely that the turns that they make and the 
distance that they travel are the product of implicit deci
sions of which they are wholly unaware. 

So if children are to make a coMection between 
everyday knowledge and classroom mathematics one 

should at least be sure at fll"S! that their everyday knowl
edge is what one thinks it to be. But there are other pitfalls. 
Voigt gives a minute and often disturbing account of a 
teacher trying to teach children a difficult and abstract 
mathematical concept through an everyday and relatively 
familiar example. His convincing description is of teacher 
and pupils trying to find the same context as each other and 
at fust completely failing to do so. While the teacher wants 
them to think about the everyday example, they are still 
adopting a too formal mathematical approach. When he 
wants them to coMect the everyday situation with mathe
matics they have swung too far in the other direction, and 
apparently decide that mathematics is not involved. 
CoMections, Voigt shows, can be made between real life 
actions and classroom mathematics, but they are not easy 
to demonstrate. 

Thus far I have shown that these papers confmn the 
gap. The separation between what children could in prin
ciple do and what they actually do is as large when it comes 
to mathematical proficiency as to other cognitive skills. 
Hatano's. paper takes the argument a step further. He 
shows that Japanese children apply some, but not all, of 
the skills that they acquire when learning how to use the 
abacus to classroom mathematics. Moreover he gives a 
reason for this. It is that the workings of the abacus in more 
complex calculations are 'opaque'. The children trust the 
abacus, but they do not understand how it produces its 
answers to such problems and that prevents them from 
applying what they learn to complex sums that they have 
to do without the help of the abacus. On the other hand the 
abacus gives children a lot of practice with simple single 
figure computations and presumably helps them to auto
matize these calculations, which does in turn help them 
with similar sums in the classroom. There is transfer when 
the children can see the reason for it. The gap can be 
crossed. 

Hatano also draws an analogy between the use of 
abacus by Japanese children and 'street mathematics' in 
Brazilian children-the phenomenon which was origi
nally spotted and documented in a remarkably ingenious 
study by Carraher, Carraher and SchliemaM (1985). '$
mathematics' provide the most striking example of the 
gap that I have been discussing and of the importance of 
that gap. Carraher, Carraher and SchliemaM showed that 
children selling fruit or other wares at their parents' 
market stalls were able to use a surprising range of 
mathematical moves, most of which they had probably 
discovered for themselves, in order to calculate the prices 
and the amount of change involved in different transac
tions. Yet these children often failed to use the same 
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mathematical skills when given identical problems al 

school, even when the problems involved real life situ
ations. Their mathematical skills seemed largely confined 
to the situation in which the skills had been acquired. 

Hatano's reasons for connecting this phenomenon 
with learning to use the abacus are that both skills involve 
learning outside school and both are mainly used in 
commercial transactions. Of course the analogy is by no 
means perfect, because the abacus is often taught in a 
relatively formal way-as formal as in the classroom. 
Nevertheless Hatano's demonstration that there is some 
transfer from the abacus to the classroom raises the ques
tion whether there are any circumstances where Brazilian 
children's experiences with street mathematics could ever 
help them to learn arithmetic in the classroom. 

The question seems even more pressing when one 
considers Saxe's interesting extension to our knowledge 
of street mathematics. His idea was to see how street 
traders dealt with rapid inflation which, as he points out, 
poses some quite difficult mathematical problems. Saxe's 
demonstration of the ingenuity and flexibility with which 
the traders surmount these problems is impressive, and of 
course it raises the question whether these people would 
have the same difficulty transferring their skills to other 
different situations which make the same mathematical 
demands. I think that it is safe to conclude that there would 
be very little transfer indeed. 

I began these comments with the suggestion that 
these studies might provide some clue about the reason for 
the difficulty which children have in applying skills which 
they have learned in one situation to other situations where 
it would be just as appropriate to use these skills. In my 
view Hatano's study produces a real possibility. His 
argument is that children manage to transfer, when they 
have a clear rationale for what they are doing in different 
situations and thus can see more clearly that two different 
tasks though not the same on the surface nevertheless have 
the same underlying structure as each other. 

One can put this argument in another way. Children 
make analogies between different problems when their 
understanding of the underlying structure of these prob
lems is clear enough to let them see that both can be solved 
in the same way. It is not making analogies as such which 
is difficult for young children. The difficulty comes in 
seeing the connections between different problems. When 
children fail to apply street mathematics or what they have 
learned from the abacus to classroom problems, their 
difficulty is probably in seeing that there is a connection 

to make. Notice that the idea of analogies as a major cause 
of cognitive development is quite different from the ideas 
al the center of the two main causal models of cognitive 
development which I mentioned al the beginning of my 
discussion. 

As it happens, there is some impressive recent re
search, outside the field of mathematical skills, to show 
that young children can make analogies when solving 
spatial problems (Brown, Kane and Echols, 1986) and 
also when they are learning to read (Goswami, 1986). 
Analogies are part of the child's life, and they are an 
excellent way--0ne could easily argue that they are the 
only way-to iron out the unevenness which leads chil
dren to do so well in one task and so poorly in another 
closely analogous one. Yet the evidence that children's 
progress in mathematics is held back by a persistent 
failure to make analogies which seem so clear to most 
adults is now very strong, and the papers in this issue, 
among other thipgs, show how persistent this failure can 
be. I should like to suggest that the only possible conclu
sion to be drawn is that children make mathematical 
analogies when they realize that the underlying structure 
of two or more problems are the same despite the fact that 
their appearance on the surface is different. The surface 
differences which most distract them are almost certainly 
related to differences in the actions involved in different 
mathematical problems. 

Our business is to ,mrk out bow to help children to see 
the underlying similarities between, for example, prob
lems which at first seem quite heterogeneous to them. 
This, surely, is an exciting task for them as well as for us. 
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The Pleasure and Pain of Mathematics: 
On Walkerdine's The Mastery of Reason 

Derek Edwards 
Loughborough University of Technology 
Leicestershire, England 

The Mastery of Reason (1988) is the latest of Valerie 
Walkerdine's explorations of the developmental and dis
cursive origins of rationality. It explores a set of issues that 
arise out a close examination of how children talk about 
quantities, of what happens when they are inculcated 
('inserted') into the adult-governed discursive practices 
of home and school, and what is going on when, citing 
Coghill (1978), she discovers a class of 5-year-olds who 
"booed the odd numbers and cheered the evens." Mathe
matics, like science and computers, for all their ostensible 
rationality and dispassionate objectivity, their general, 
context-free applicability, are nevertheless encountered 
as fearsome, pleasurable, powerful devices that can both 
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fascinate and repel, reward and punish the learner, and es
pecially, given their association with notions of power and 
control, may pose problems for the education and sociali
zation of children for whom power and control are fraught 
values (girls, very often): 

mastety of mathematics is not the end point of a naturally 
achieved maturation, or a developmental sequence which is 
universally human, as in all theories of cognitive developme~ 
Rather, it is a specific and powerfully created discourse in which 
power and control are inscribed in its very form (p.200). 

Mathematics is the apogee of a view of knowledge 
that is embodied in Piaget and Freud, Darwin, science and 
logic-a "triumph of reason over emotion" (p. 5), in 
which the primary structuralion of reason is held to be 
material reality. 

Against this hegemony, Walkerdine poses a post
structural view of mathematics as cultural semiosis, a 
view derived from Foucault and Lacan, where mathemati
cal rationality is encountered within a system of signs and 
meanings, discursive practices that are oriented to the 
construction of truth within the exercise of power, and to 
the regulation of the social order through science, psy
chology, medicine, and other such authoritative objectivi
ties; It is this sort of perspective that informs, and is 
informed by, her explorations of children's talk. 

It is currently fashionable to seek understandings of 
children's mental 'development, and in particular, their 
acquisition of rationality and mathematical competence, 
in terms of the contrasts and relationships that may obtain 
between their formal schooling, and their out of school 
understandings and activities. Walkerdine's approach is 
to pursue such issues not in terms of the development of 
cognitive skills, however these might be contextualized, 
but in terms of situated discursive practices. Mathematics 
and science are themselves discursive practices, with 
elements of fantasy, desire, and constraint: "the fantasy of 
discourse and practice in which the world becomes what 
is wanted: regular, ordered, controllable ... with all aspects 
of value, emotionality, and desire suppressed" (p.188). To 
learn to use these discourses, children must learn to 
"forget" or "suppress" some richly meaningful content
not merely to acquire a neutrally objective and decontex
tualized mode of thought. 

Walkerdine reveals in her investigation of classroom 
discourse many of the sorts of pedagogic procedures that 
Neil Men:er and I (Edwards and Mercer, 1987) have also 
discussed: the special and peculiar forms of discourse 
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used in school tasks and classroom lessons: the impor
tance of content rather than merely structure in examining 
pedagogic discourse (which, as Walkerdine notes, p. 89, 
is essential to the incorporation of an historical dimension 
into the analysis of discourse): the importance of dis
course in establishing the significance of experience (rather 
than merely vice versa): and the problems which arise in 
the teacher's use of discursive devices which ostensibly 
elicit from children what is actually being taught to them. 
However, Walkerdine's study places its major focus on 
contrasts between the discourse of home and of school. 

The empirical analysis centers on children's and 
adults' uses of what are usually taken to be proto-mathe
matical quantifiers in children's everyday speech: terms 
such as "more," "less," "a lot," "big," "little," and so on. 
But, rather than analyzing these as lexical descriptors 
which might be decomposed into a set of universal seman
tic features, or defined in terms of prototypical category 
definitions, Walkerdine studies their occurrence in situ
ated discourse. She discovers them to be polysemic and 
functional, varying with pragmatic situational usage
such as the regulation of food portions, and general issues 
of food and drink consumption within family relation
ships, the distribution of limited resources, and such 
matters. The terms' referential appropriateness is shown 
to be conditional upon those contexts. Thus, "lot" and 
"little" were spontaneously used for contrasting food 
quantities, while "more" and "less" were not. Indeed, 
'less' was not used at all in talk at home, except in what are 
termed "specifically pedagogic contexts." 

So, while all of these quantificational words (and 
others) were part of children's vocabularies, and were 
used appropriately, their usage was demonstrably re
stricted to particular discursive practices, particular issues 
or domains of family relationships, rather than operating 
as universal quantifiers on absolute scales. Thus, the usual 
sets of abstracted opposites (more and less, big and little) 
that teachers, educated adults and analysts might expect to 
find, did not operate as such in the discursive practices 
within which the children were engaged at home. 

With regard to the word "more," Walkerdine notes: 

It is striking that almost all the examples of more from this 
corpus fonn part of practices where the regulation of consump
tion is the object. In every case initiated by the child, she either 
wants more precious commodities, of which the mother sees it 
her duty to limit conswnp1ion, or the child does not want to finish 
food which the mother sees it her duty to make the child eat 
(p.26). 

Walkerdine also argues that this ---,rd usage pos
sesses a wide cultural-political significance: 

In terms of consmnption within our culture, it is more which 
is valued. .. its value does not come from the internal relations of 
the linguistic system or a set of perceptual universals: it comes 
from the regulation of social practices which make up our cul
ture ... I would argue that every aspect of lexical development for 
example, is amenable to such an analysis and moreover can be 
related to domestic, school, and work practice (p.27). 

In school, a teacher is recorded telling her young class 
the story of "The Three Bears." It is not story time, but a 
mathematics lesson, on seriation and relative size. Instead 
of confusing them all with abstract talk of size and equiva
lence, numbers and arithmetic, she has chosen to employ 
the familiar story of the big Daddy bear, the middle-sized 
Mummy bear, and the small Baby bear. Some important 
principles of current developmental psychology are being 
applied: children learn abstract concepts best when these 
are introduced in terms of familiar experience and narra
tives. But the children still appear to be confused. It turns 
out that, in the ordinary discourse of life at home, Mum
mies are always "big," like Daddies, while children are 
mostly "little" (not "small"), but also "middle" or "big," 
depending on family discursive practices--0ne can be a 
little girl and a big sister and a "big girl n9w" and the one 
in the "middle," all in a short space of time. The terms 
"big" and "little" are deployed in highly significant dis
cursive practices, where issues of socialization, identity, 
normality and deviance, praise and punishment, are at 
stake: 

Any girl's designation as 'big' or 'little' was not fixed, 
therefore, but depends on the practice and her position in it. The 
girl may be a 'little girl' but a 'big sister' ... although the terms are 
used in a way which is not specific to size they are oot used 
loosely, nor are they used indiscriminately, but indeed in very 
specific practices and circumstances to represent a specific set of 
relationships" (p.69) 

Discursive practices at school, while often aimed at 
introducing formal concepts within friendly and familiar 
contexts, can easily result instead in "a complex and 
bewildering confusion" (p.47). Instead of helpful 
Donaldson-style (1978) human sense and "embedded
ness," what we get is a clash between two discourses, with 
different significations-same signifiers, different signi
fiers, so different signs. The story invokes non-mathe
matical orders of everyday signification, to do with family 
life, authority, gender differences, etc., which are not 
transposable into the formal abstractions of mathematics. 
It is not that the children are doing mathematics, or proto-
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mathematics, outside of school, and need to learn a new 
context for it lbey are doing something else with the 
words altogether. So: 

the problem for the children's Insertion within school 
mathematics practices becomes one of prising apart and rearticu
lating the signifiers as entering into different relations of signi• 
fication, in this case one in which. .. evaluative aspects of the 
signifier are suppressed (p.68). 

In ordinary conversation, size-relation tenns multi
ply signify all sorts of non-size practices and relationships 
between people, so that their use in the education of formal 
mathematics poses essentially discursive difficulties, and 
neither is it necessarily helped by the casual embedding of 
such terms in familiar narratives and "real-world" con
texts. 

Similarly, Walkerdine shows that in discourse at 
home, and in children's spontaneous narratives, money (a 
popular domain for school mathematics) is understood not 
merely as objects and quantities, but as involved in work
money-goods exchanges, subject to adult-child power 
issues, and the discourse of what adults cannot afford to 
buy for their children, issues of 'waste', and so on. 
Preschool children learn about money and value in the 
context of a discourse of the domestic economr---con
straint, and money's purchasing power, of why adults 
have to go to work (why mummy or daddy can't be home 
yet, etc.), and what can and cannot be afforded, the 
necessity-luxury dichotomy, morally tinged with social
izing issues of excess and waste. It is a social-moral nexus 
of relationships and power, significance and value. It is 
these sorts of significations that school mathematics must 
'suppress', and in so doing, it suppresses the property of 
constructedness itself: 

this so-called natural process of mastery entails consider
able and complex suppression. That suppression is both painful 
-and extremely JX)Werful. That power is pleasurable. It is the 
power of the triumph of reason over emotion, the fictional power 
over the practices of everyday life (p. 186). 

Walkerdine's notion of discursive practice is one in which 
the material world clearly figures importantly, but in 
semiotic tenns rather than 'objective' ones. Material real
ity is "slippery and mobile ... only understood in terms of 
its meaningful insertion within particular discursive prac
tices" (p.30). It is not immediately clear how discourse 
could have primacy over material reality, until one real
izes what explanatory work is being done by the notion of 
semiosis. The material world is not the world-in-itself, but 

the world signified. This is a consideration that has impli
cations for analysts as well as for participants: 

cooking ... is commonly taken in nursery and infant schools 
[i.e., kindergarten] to be mathematics or pre-mathematics, if 
viewed as an opportunity for the concrete manipulation of 
certain objects. It is therefore imtructive to comider that when 
a traditional developmental reading is imposed upon such a prac
tice, it utilizes a quasi-mathematical discourse to do so. Logico
mathematical structures become a reading by which the psy
chologist or teacher 'sees• mathematics or cognition in the 
activity in question. On the basis of this reading, the practice 
'becomes' cognition or mathematics (p.96-7: original empha
ses). 

Semiotics studies all sorts of signification, not only 
language. Material reality and behavioral activity are 
important in so far as they signify, rather than just exist in 
the world. In this sense, "no practice is non-discursive" (p. 
185). Toe notion that reality itself can be taken to be a 
discursive accomplishment effectively redefines the tra
ditional distinctions between language, cognition and 
context, used as discrete categories in developmental 
psychology, but all of which become amenable to study on 
the same basis, \\hich is the analysis of discourse. Further, 
it is a perspective which suggests the fruitfulness of 
looking for relationships between the construction of re
ality at home and in school on the one hand, and in the 
production both of ordinary common sense, and of scien
tific knowledge on the other. 

While the latter concerns are the province of ethnom
ethodology, conversation analysis and the sociology of 
science (see, for example, Gilbert and Mulkay, 1984), 
Walkerdine appears to reject such approaches in favor of 
the French school of post-structural and psychoanalytical 
theory. Nevertheless, the sophistication of recent conver
sation-analytical, and discourse-analytical approaches to 
psychological and epistemological issues (e.g., Potter and 
Wetherell, 1987) goes well beyond "a simple view ofturn
taking" where "there are not two equal participants" 
(Walkerdine, pp. 26 and 31), and indeed derives both from 
ethnomethodology, and also from the kind of post-mod
em epistemology of truth as discursive production that 
Walkerdine herself embraces. Her assertion that "if chil
dren are produced as subjects through their insertion as 
relations within specific practices, we should expect 
multiplicity and not singularity" (p. 71) chimes closely 
with Potter and Wetherell's (op. cit.) discussion of the 
variability of accounts and the construction of 'self.' Toe 
time is ripe for an integrated discourse-analytical assault 
upon the general psychology of knowledge and of cogni

tion. 

40 The Quarterly Newsletter of the iaboratory of Comparative Human Cognition, Jan/Apr 1989, Volume 11, Numbers I & 2 



References 

Coghill, V. (1978). Infant school reasoning. Teachers' Research 
Group, unpublished mimeo. Cited in Walkerdine, 1988, p.68. 

Gilbert, G.N. & Mulkay, M. (1984). Opening pandora's box A 
sociological analysis of sciendsts' discourse. Cam bridge: 
Cambridge University Press. 

Donaldson, M. (1978). Children's minds. London: Forttana. 

Edwards, D. & Mercer, N.M. (1987). Common Jmo..tedge: 1he 
development of understanding in the classroom. London: 

Potter, J. & Wetherell, M. (1987). Discourse and social psychol
ogy: Be)Clld attitudes and behaviour. London: Sage. 

Methuen. 
Walkerdine, V. (1988). The masteryofreason: Cogniliw De"'1-
opment and the Production of Rationality. London: Routledge. 

COPYRIGHT: The code on the first page of an article in this Newsletter indicates that the Publisher gives consent for 
individual copies of that article to be made for personal or internal use, on the condition that, for copying beyond the 
quantities permitted under Fair Use (Sections 107 and 108 of the U.S. Copyright Law), the copier pay the stated $1.00 
per-copy fee through the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970. This consent does 
not extend to other kinds of copying. 

SUBMISSION OF MANUSCRIPTS: Please send three copies of manuscripts, double-spaced, figures and 
illustrations in original, camera-ready form to Peggy Bengel. 

NOTICE OF SUBSCRIPTION RATE CHANGE: To help cut our loses we have increased our rates, effective 
January I, 1988 to $20.00 per year; single and back issues are available for $5.00 each. 

Subscription Form 

Nam•--------------------------~ 

Address--------------------------

------------------ Zip _______ _ 
Please enter my subscription to The Quarterly Newsletter of the Laboratory 
of Comparative Human Cognition. 

I am enclosing$ for years at $20.00 per year 

For mailing outside the U.S. and Canada, please add $7 .00. 

Please make your checks payable to UC Regents and mail them to: 

Peggy Bengel 
Laboratory of Comparatiye Human Cognition, Xe003 
University of California, San Diego 
La Jolla, CA 92093 

MOVING? 

Please give us as much 
advance notice as 
possible and avoid 
missing an issue of the 
Newsletter. 

The Quarterly Ne..,,Jetter of the uboratory of Comparative Human Cognition, Jani Apr 1989, Volume 11, Numbers I& 2 41 


